268 research outputs found

    Distributed localization of a RF target in NLOS environments

    Full text link
    We propose a novel distributed expectation maximization (EM) method for non-cooperative RF device localization using a wireless sensor network. We consider the scenario where few or no sensors receive line-of-sight signals from the target. In the case of non-line-of-sight signals, the signal path consists of a single reflection between the transmitter and receiver. Each sensor is able to measure the time difference of arrival of the target's signal with respect to a reference sensor, as well as the angle of arrival of the target's signal. We derive a distributed EM algorithm where each node makes use of its local information to compute summary statistics, and then shares these statistics with its neighbors to improve its estimate of the target localization. Since all the measurements need not be centralized at a single location, the spectrum usage can be significantly reduced. The distributed algorithm also allows for increased robustness of the sensor network in the case of node failures. We show that our distributed algorithm converges, and simulation results suggest that our method achieves an accuracy close to the centralized EM algorithm. We apply the distributed EM algorithm to a set of experimental measurements with a network of four nodes, which confirm that the algorithm is able to localize a RF target in a realistic non-line-of-sight scenario.Comment: 30 pages, 11 figure

    Simultaneous Target and Multipath Positioning

    Get PDF
    <p>In this work, we present the Simultaneous Target and Multipath Positioning (STAMP) technique to jointly estimate the unknown target position and uncertain multipath channel parameters. We illustrate the applications of STAMP for target tracking/geolocation problems using single-station hybrid TOA/AOA system, monostatic MIMO radar and multistatic range-based/AOA based localization systems. The STAMP algorithm is derived using a recursive Bayesian framework by including the target state and multipath channel parameters as a single random vector, and the unknown correspondence between observations and signal propagation channels is solved using the multi-scan multi-hypothesis data association. In the presence of the unknown time-varying number of multipath propagation modes, the STAMP algorithm is modified based on the single-cluster PHD filtering by modeling the multipath parameter state as a random finite set. In this case, the target state is defined as the parent process, which is updated by using a particle filter or multi-hypothesis Kalman filter. The multipath channel parameter is defined as the daughter process and updated based on an explicit Gaussian mixture PHD filter. Moreover, the idenfiability analysis of the joint estimation problem is provided in terms of Cramér-Rao lower bound (CRLB). The Fisher information contributed by each propagation mode is investigated, and the effect of Fisher information loss caused by the measurement origin uncertainty is also studied. The proposed STAMP algorithms are evaluated based on a set of illustrative numeric simulations and real data experiments with an indoor multi-channel radar testbed. Substantial improvement in target localization accuracy is observed.</p>Dissertatio

    Fly by data link: feasibility of a relative navigation solution for aviation relying on a future L-band data link

    Get PDF
    Trabalho final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e TelecomunicaçõesO presente trabalho estuda uma solução alternativa de navegação aeronáutica que contribua para a racionalização da infrastrutura terrestre de ajudas-rádio de navegação na Europa. O conceito designado de “Performance Based Navigation (PBN)” emerge actualmente ao nível da Organização Internacional de Aviação Civil, visando o aperfeiçoamento do sistema de gestão do tráfego aéreo ao nível da eficiência, segurançae capacidade. O conceito PBN promove a modernização da infrastrutura aeronáutica com base na utilização preferencial de sistemas de navegação por satélite, designadamente mediante o recurso a sinais disponibilizados pelas constelações “Global Navigation Satellite System (GNSS)”. Face às vulnerabilidades dos sistemas GNSS a interferências RF, “jamming” deliberado ou fenómenos solares, foi decidido manter uma infrastrutura de recurso/”backup”, para mitigar falhas GNSS, baseada numa redede rádio-ajudas terrestres “Distance Measuring Equipment (DME)”. Visto que estes DMEs não facultam uma boa cobertura, especialmente a baixa altitude, e tratando-se de equipamentos próximos da obsolescência tecnológica e pouco eficientes em termos de espectro rádioeléctrico, a sua racionalização requer uma tecnologia alternativa. O presente trabalho explora o recurso a novas tecnologias aeronáuticas de comunicações dados ar-solo, designadamente o futuro “data link” OFDM/TDMA de banda L (LDACS), verificando a sua adequação para suportarem as funções de navegação descritas substituindo os DMEs. Pretende-se confirmar a viabilidade com base no conceito de Navegação Relativa (RELNAV) usado em contexto militar recorrendo a filtros Kalman. As características da tecnologia LDACS são descritas e são apresentados resultados de testes do seu desempenho em termos de medição de distâncias (“ranging”). Com base nas capacidades RELNAV militares são propostos melhoramentos baseadosem filtros Kalman, simulando para demonstrar que o LDACS pode ser usado para funçãode navegação. Demonstrada a viabilidade, fica em aberto a oportunidade para sinergias que poderão viabilizar a racionalização da infrastrutura terrestre de navegação e aviónicos.Abstract: The main purpose of this work is to study an alternative solution for aeronautical aircraft navigation contributing to the rationalization of the existing European ground navigation infrastructure. The emerging Performance Based Navigation (PBN) concept, described in the document 9613 of the International Civil Aviation Organization (ICAO), calls for increased reliance on Global Navigation Satellite Systems (GNSS) (and its augmentation/differential correction systems1) but retaining ground beacons such as the Distance Measuring Equipments (DME) to cope with Global Positioning System (GPS) and GALILEO outages (e.g. jamming/solar storms). The present work will focus on demonstrating the feasibility of an alternative technology to allow the decommissioning of such DME beacons based on the re-use offuture L-Band Air Ground Data Link (LDACS) communication solutions being subject of research studies. Such data links may support the required levels of positioning, navigation and timing required to complement GNSS when the aircraft fly in an area navigation environment. This work will describe the LDACS data link technologies2 and will explain how such communications enablers would be able to support a “relative navigation” function similar to the one available in military data link technologies usinga geodetic grid. The feasibility of the proposed solution will be demonstrated on the basis of lessons learnt from military relative navigation and simulations which will evidence the technical performance/error parameters of the system in terms of ranging, bearing and horizontal positioning and other relevant QoS aspects. In addition, the multipath and co-site interference effects will be also discussed. Should the proposed solution be demonstrated as viable, it may open the door, not only for synergies leading to a more seamless aircraft equipage but also to the rationalization of aeronautical systems in the spectrum band 960-1215 MHz, which is highly congested and subject of stringent non-interference basis operational limitations

    Proceedings of the Fifth International Mobile Satellite Conference 1997

    Get PDF
    Satellite-based mobile communications systems provide voice and data communications to users over a vast geographic area. The users may communicate via mobile or hand-held terminals, which may also provide access to terrestrial communications services. While previous International Mobile Satellite Conferences have concentrated on technical advances and the increasing worldwide commercial activities, this conference focuses on the next generation of mobile satellite services. The approximately 80 papers included here cover sessions in the following areas: networking and protocols; code division multiple access technologies; demand, economics and technology issues; current and planned systems; propagation; terminal technology; modulation and coding advances; spacecraft technology; advanced systems; and applications and experiments

    Wi-Fi Sensing: Applications and Challenges

    Get PDF
    Wi-Fi technology has strong potentials in indoor and outdoor sensing applications, it has several important features which makes it an appealing option compared to other sensing technologies. This paper presents a survey on different applications of Wi-Fi-based sensing systems such as elderly people monitoring, activity classification, gesture recognition, people counting, through the wall sensing, behind the corner sensing, and many other applications. The challenges and interesting future directions are also highlighted

    Wi-Fi based people tracking in challenging environments

    Get PDF
    People tracking is a key building block in many applications such as abnormal activity detection, gesture recognition, and elderly persons monitoring. Video-based systems have many limitations making them ineffective in many situations. Wi-Fi provides an easily accessible source of opportunity for people tracking that does not have the limitations of video-based systems. The system will detect, localise, and track people, based on the available Wi-Fi signals that are reflected from their bodies. Wi-Fi based systems still need to address some challenges in order to be able to operate in challenging environments. Some of these challenges include the detection of the weak signal, the detection of abrupt people motion, and the presence of multipath propagation. In this thesis, these three main challenges will be addressed. Firstly, a weak signal detection method that uses the changes in the signals that are reflected from static objects, to improve the detection probability of weak signals that are reflected from the person’s body. Then, a deep learning based Wi-Fi localisation technique is proposed that significantly improves the runtime and the accuracy in comparison with existing techniques. After that, a quantum mechanics inspired tracking method is proposed to address the abrupt motion problem. The proposed method uses some interesting phenomena in the quantum world, where the person is allowed to exist at multiple positions simultaneously. The results show a significant improvement in reducing the tracking error and in reducing the tracking delay

    Investigation of L-band shipboard antennas for maritime satellite applications

    Get PDF
    A basic conceptual investigation of low cost L-band antenna subsystems for shipboard use was conducted by identifying the various pertinent design trade-offs and related performance characteristics peculiar to the civilian maritime application, and by comparing alternate approaches for their simplicity and general suitability. The study was not directed at a single specific proposal, but was intended to be parametric in nature. Antenna system concepts were to be investigated for a range of gain of 3 to 18 dB, with a value of about 10 dB considered as a baseline reference. As the primary source of potential complexity in shipboard antennas, which have beamwidths less than hemispherical as the beam pointing or selecting mechanism, major emphasis was directed at this aspect. Three categories of antenna system concepts were identified: (1) mechanically pointed, single-beam antennas; (2) fixed antennas with switched-beams; and (3) electronically-steered phased arrays. It is recommended that an L-band short backfire antenna subsystem, including a two-axis motor driven gimbal mount, and necessary single channel monopulse tracking receiver portions be developed for demonstration of performance and subsystem simplicity
    corecore