2 research outputs found

    On Packing Colorings of Distance Graphs

    Full text link
    The {\em packing chromatic number} χρ(G)\chi_{\rho}(G) of a graph GG is the least integer kk for which there exists a mapping ff from V(G)V(G) to {1,2,,k}\{1,2,\ldots ,k\} such that any two vertices of color ii are at distance at least i+1i+1. This paper studies the packing chromatic number of infinite distance graphs G(Z,D)G(\mathbb{Z},D), i.e. graphs with the set Z\mathbb{Z} of integers as vertex set, with two distinct vertices i,jZi,j\in \mathbb{Z} being adjacent if and only if ijD|i-j|\in D. We present lower and upper bounds for χρ(G(Z,D))\chi_{\rho}(G(\mathbb{Z},D)), showing that for finite DD, the packing chromatic number is finite. Our main result concerns distance graphs with D={1,t}D=\{1,t\} for which we prove some upper bounds on their packing chromatic numbers, the smaller ones being for t447t\geq 447: χρ(G(Z,{1,t}))40\chi_{\rho}(G(\mathbb{Z},\{1,t\}))\leq 40 if tt is odd and χρ(G(Z,{1,t}))81\chi_{\rho}(G(\mathbb{Z},\{1,t\}))\leq 81 if tt is even

    On interval number in cycle convexity

    Get PDF
    International audienceRecently, Araujo et al. [Manuscript in preparation, 2017] introduced the notion of Cycle Convexity of graphs. In their seminal work, they studied the graph convexity parameter called hull number for this new graph convexity they proposed, and they presented some of its applications in Knot theory. Roughly, the tunnel number of a knot embedded in a plane is upper bounded by the hull number of a corresponding planar 4-regular graph in cycle convexity. In this paper, we go further in the study of this new graph convexity and we study the interval number of a graph in cycle convexity. This parameter is, alongside the hull number, one of the most studied parameters in the literature about graph convexities. Precisely, given a graph G, its interval number in cycle convexity, denoted by incc(G)in_{cc} (G), is the minimum cardinality of a set S ⊆ V (G) such that every vertex w ∈ V (G) \ S has two distinct neighbors u, v ∈ S such that u and v lie in same connected component of G[S], i.e. the subgraph of G induced by the vertices in S.In this work, first we provide bounds on incc(G)in_{cc} (G) and its relations to other graph convexity parameters, and explore its behavior on grids. Then, we present some hardness results by showing that deciding whether incc(G)in_{cc} (G) ≤ k is NP-complete, even if G is a split graph or a bounded-degree planar graph, and that the problem is W[2]-hard in bipartite graphs when k is the parameter. As a consequence, we obtainthat incc(G)in_{cc} (G) cannot be approximated up to a constant factor in the classes of split graphs and bipartite graphs (unless P = N P ).On the positive side, we present polynomial-time algorithms to compute incc(G)in_{cc} (G) for outerplanar graphs, cobipartite graphs and interval graphs. We also present fixed-parameter tractable (FPT) algorithms to compute it for (q, q − 4)-graphs when q is the parameter and for general graphs G when parameterized either by the treewidth or the neighborhood diversity of G.Some of our hardness results and positive results are not known to hold for related graph convexities and domination problems. We hope that the design of our new reductions and polynomial-time algorithms can be helpful in order to advance in the study of related graph problems
    corecore