53,636 research outputs found

    Complexity Results for Confluence Problems

    Full text link
    Abstract. We study the complexity of the confluence problem for re-stricted kinds of semi–Thue systems, vector replacement systems and general trace rewriting systems. We prove that confluence for length– reducing semi–Thue systems is P–complete and that this complexity reduces to NC2 in the monadic case. For length–reducing vector re-placement systems we prove that the confluence problem is PSPACE– complete and that the complexity reduces to NP and P for monadic sys-tems and special systems, respectively. Finally we prove that for special trace rewriting systems, confluence can be decided in polynomial time and that the extended word problem for special trace rewriting systems is undecidable.

    Rewriting-based Verification and Debugging of Web Systems

    Full text link
    The increasing complexity of Web system has led to the development of sophisticated formal methodologies for verifying and correcting Web data and Web programs. In general, establishing whether a Web system behaves correctly with respect to the original intention of the programmer or checking its internal consistency are non-trivial tasks as witnessed by many studies in the literature. In this dissertation, we face two challenging problems related to the verification of Web systems. Firstly, we extend a previous Web verification framework based on partial rewriting by providing a semi-automatic technique for repairing Web systems. We propose a basic repairing methodology that is endowed with several strategies for optimizing the number of repair actions that must be executed in order to fix a given Web site. Also, we develop an improvement of the Web verification framework that is based on abstract interpretation and greatly enhances both efficiency and scalability of the original technique. Secondly, we formalize a framework for the specification and model-checking of dynamic Web applications that is based on Rewriting Logic. Our framework allows one to simulate the user navigation and the evaluation of Web scripts within a Web application, and also check important related properties such us reachability and consistency. When a property is refuted, a counter-example with the erroneous trace is delivered. Such information can be analyzed in order to debug the Web application under examination by means of a novel backward trace slicing technique that we formulated for this purpose. This technique consists in tracing back, along an execution trace, all the relevant symbols of the term (or state) that we are interested to observe.Romero ., DO. (2011). Rewriting-based Verification and Debugging of Web Systems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/12496Palanci

    Inspecting rewriting logic computations (in a parametric and stepwise way)

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-54624-2_12Trace inspection is concerned with techniques that allow the trace content to be searched for specific components. This paper presents a rich and highly dynamic, parameterized technique for the trace inspection of Rewriting Logic theories that allows the non-deterministic execution of a given unconditional rewrite theory to be followed up in different ways. Using this technique, an analyst can browse, slice, filter, or search the traces as they come to life during the program execution. Starting from a selected state in the computation tree, the navigation of the trace is driven by a user-defined, inspection criterion that specifies the required exploration mode. By selecting different inspection criteria, one can automatically derive a family of practical algorithms such as program steppers and more sophisticated dynamic trace slicers that facilitate the dynamic detection of control and data dependencies across the computation tree. Our methodology, which is implemented in the Anima graphical tool, allows users to capture the impact of a given criterion thereby facilitating the detection of improper program behaviors.This work has been partially supported by the EU (FEDER), the Spanish MEC project ref. TIN2010-21062-C02-02, the Spanish MICINN complementary action ref. TIN2009-07495-E, and by Generalitat Valenciana ref. PROMETEO2011/052. This work was carried out during the tenure of D. Ballis’ ERCIM “Alain Bensoussan ”Postdoctoral Fellowship. The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n. 246016. F. Frechina was supported by FPU-ME grant AP2010-5681.Alpuente Frasnedo, M.; Ballis, D.; Frechina, F.; Sapiña Sanchis, J. (2014). Inspecting rewriting logic computations (in a parametric and stepwise way). En Specification, algebra, and software: essays dedicated to Kokichi Futatsugi. Springer Verlag (Germany). 229-255. https://doi.org/10.1007/978-3-642-54624-2_12S229255Alpuente, M., Ballis, D., Baggi, M., Falaschi, M.: A Fold/Unfold Transformation Framework for Rewrite Theories extended to CCT. In: Proc. PEPM 2010, pp. 43–52. ACM (2010)Alpuente, M., Ballis, D., Espert, J., Romero, D.: Model-checking Web Applications with Web-TLR. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 341–346. Springer, Heidelberg (2010)Alpuente, M., Ballis, D., Espert, J., Romero, D.: Backward Trace Slicing for Rewriting Logic Theories. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 34–48. Springer, Heidelberg (2011)Alpuente, M., Ballis, D., Frechina, F., Sapiña, J.: Slicing-Based Trace Analysis of Rewriting Logic Specifications with iJulienne. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 121–124. Springer, Heidelberg (2013)Alpuente, M., Ballis, D., Frechina, F., Romero, D.: Using Conditional Trace Slicing for improving Maude programs. Science of Computer Programming (2013) (to appear)Alpuente, M., Ballis, D., Romero, D.: A Rewriting Logic Approach to the Formal Specification and Verification of Web applications. Science of Computer Programming (2013) (to appear)Baggi, M., Ballis, D., Falaschi, M.: Quantitative Pathway Logic for Computational Biology. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 68–82. Springer, Heidelberg (2009)Bruni, R., Meseguer, J.: Semantic Foundations for Generalized Rewrite Theories. Theoretical Computer Science 360(1-3), 386–414 (2006)Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: Maude Manual (Version 2.6). Technical report, SRI Int’l Computer Science Laboratory (2011), http://maude.cs.uiuc.edu/maude2-manual/Clements, J., Flatt, M., Felleisen, M.: Modeling an Algebraic Stepper. In: Sands, D. (ed.) ESOP 2001. LNCS, vol. 2028, pp. 320–334. Springer, Heidelberg (2001)Durán, F., Meseguer, J.: A Maude Coherence Checker Tool for Conditional Order-Sorted Rewrite Theories. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381, pp. 86–103. Springer, Heidelberg (2010)Eker, S.: Associative-Commutative Matching via Bipartite Graph Matching. The Computer Journal 38(5), 381–399 (1995)Eker, S.: Associative-Commutative Rewriting on Large Terms. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 14–29. Springer, Heidelberg (2003)Klop, J.W.: Term Rewriting Systems. In: Abramsky, S., Gabbay, D., Maibaum, T. (eds.) Handbook of Logic in Computer Science, vol. I, pp. 1–112. Oxford University Press (1992)Martí-Oliet, N., Meseguer, J.: Rewriting Logic: Roadmap and Bibliography. Theoretical Computer Science 285(2), 121–154 (2002)Meseguer, J.: Conditional Rewriting Logic as a Unified Model of Concurrency. Theoretical Computer Science 96(1), 73–155 (1992)Meseguer, J.: The Temporal Logic of Rewriting: A Gentle Introduction. In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Montanari Festschrift. LNCS, vol. 5065, pp. 354–382. Springer, Heidelberg (2008)Plotkin, G.D.: The Origins of Structural Operational Semantics. The Journal of Logic and Algebraic Programming 60-61(1), 3–15 (2004)Riesco, A., Verdejo, A., Caballero, R., Martí-Oliet, N.: Declarative Debugging of Rewriting Logic Specifications. In: Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486, pp. 308–325. Springer, Heidelberg (2009)Riesco, A., Verdejo, A., Martí-Oliet, N.: Declarative Debugging of Missing Answers for Maude. In: Proc. RTA 2010. LIPIcs, vol. 6, pp. 277–294 (2010)TeReSe. Term Rewriting Systems. Cambridge University Press (2003

    Reversible Computation in Term Rewriting

    Full text link
    Essentially, in a reversible programming language, for each forward computation from state SS to state SS', there exists a constructive method to go backwards from state SS' to state SS. Besides its theoretical interest, reversible computation is a fundamental concept which is relevant in many different areas like cellular automata, bidirectional program transformation, or quantum computing, to name a few. In this work, we focus on term rewriting, a computation model that underlies most rule-based programming languages. In general, term rewriting is not reversible, even for injective functions; namely, given a rewrite step t1t2t_1 \rightarrow t_2, we do not always have a decidable method to get t1t_1 from t2t_2. Here, we introduce a conservative extension of term rewriting that becomes reversible. Furthermore, we also define two transformations, injectivization and inversion, to make a rewrite system reversible using standard term rewriting. We illustrate the usefulness of our transformations in the context of bidirectional program transformation.Comment: To appear in the Journal of Logical and Algebraic Methods in Programmin

    Graph Creation, Visualisation and Transformation

    Full text link
    We describe a tool to create, edit, visualise and compute with interaction nets - a form of graph rewriting systems. The editor, called GraphPaper, allows users to create and edit graphs and their transformation rules using an intuitive user interface. The editor uses the functionalities of the TULIP system, which gives us access to a wealth of visualisation algorithms. Interaction nets are not only a formalism for the specification of graphs, but also a rewrite-based computation model. We discuss graph rewriting strategies and a language to express them in order to perform strategic interaction net rewriting

    Structure and Properties of Traces for Functional Programs

    Get PDF
    The tracer Hat records in a detailed trace the computation of a program written in the lazy functional language Haskell. The trace can then be viewed in various ways to support program comprehension and debugging. The trace was named the augmented redex trail. Its structure was inspired by standard graph rewriting implementations of functional languages. Here we describe a model of the trace that captures its essential properties and allows formal reasoning. The trace is a graph constructed by graph rewriting but goes beyond simple term graphs. Although the trace is a graph whose structure is independent of any rewriting strategy, we define the trace inductively, thus giving us a powerful method for proving its properties
    corecore