90,056 research outputs found

    Dynamic Input/Output Automata: a Formal and Compositional Model for Dynamic Systems

    Get PDF
    We present dynamic I/O automata (DIOA), a compositional model of dynamic systems, based on I/O automata. In our model, automata can be created and destroyed dynamically, as computation proceeds. In addition, an automaton can dynamically change its signature, that is, the set of actions in which it can participate. This allows us to model mobility, by enforcing the constraint that only automata at the same location may synchronize on common actions. Our model features operators for parallel composition, action hiding, and action renaming. It also features a notion of automaton creation, and a notion of trace inclusion from one dynamic system to another, which can be used to prove that one system implements the other. Our model is hierarchical: a dynamically changing system of interacting automata is itself modeled as a single automaton that is "one level higher." This can be repeated, so that an automaton that represents such a dynamic system can itself be created and destroyed. We can thus model the addition and removal of entire subsystems with a single action. We establish fundamental compositionality results for DIOA: if one component is replaced by another whose traces are a subset of the former, then the set of traces of the system as a whole can only be reduced, and not increased, i.e., no new behaviors are added. That is, parallel composition, action hiding, and action renaming, are all monotonic with respect to trace inclusion. We also show that, under certain technical conditions, automaton creation is monotonic with respect to trace inclusion: if a system creates automaton Ai instead of (previously) creating automaton A'i, and the traces of Ai are a subset of the traces of A'i,then the set of traces of the overall system is possibly reduced, but not increased. Our trace inclusion results imply that trace equivalence is a congruence relation with respect to parallel composition, action hiding, and action renaming. Our trace inclusion results enable a design and refinement methodology based solely on the notion of externally visible behavior, and which is therefore independent of specific methods of establishing trace inclusion. It permits the refinement of components and subsystems in isolation from the entire system, and provides more flexibility in refinement than a methodology which is, for example, based on the monotonicity of forward simulation with respect to parallel composition. In the latter, every automaton must be refined using forward simulation, whereas in our framework different automata can be refined using different methods. The DIOA model was defined to support the analysis of mobile agent systems, in a joint project with researchers at Nippon Telegraph and Telephone. It can also be used for other forms of dynamic systems, such as systems described by means of object-oriented programs, and systems containing services with changing access permissions

    Atomic Action Refinement in Model Based Testing

    Get PDF
    In model based testing (MBT) test cases are derived from a specification of the system that we want to test. In general the specification is more abstract than the implementation. This may result in 1) test cases that are not executable, because their actions are too abstract (the implementation does not understand them); or 2) test cases that are incorrect, because the specification abstracts from relevant behavior. The standard approach to remedy this problem is to rewrite the specification by hand to the required level of detail and regenerate the test cases. This is error-prone and time consuming. Another approach is to do some translation during test execution. This solution has no basis in the theory of MBT. We propose a framework to add the required level of detail automatically to the abstract specification and/or abstract test cases.\ud \ud This paper focuses on general atomic action refinement. This means that an abstract action is replaced by more complex behavior (expressed as a labeled transition system). With general we mean that we impose as few restrictions as possible. Atomic means that the actions that are being refined behave as if they were atomic, i.e., no other actions are allowed to interfere

    Towards Symbolic Model-Based Mutation Testing: Combining Reachability and Refinement Checking

    Full text link
    Model-based mutation testing uses altered test models to derive test cases that are able to reveal whether a modelled fault has been implemented. This requires conformance checking between the original and the mutated model. This paper presents an approach for symbolic conformance checking of action systems, which are well-suited to specify reactive systems. We also consider nondeterminism in our models. Hence, we do not check for equivalence, but for refinement. We encode the transition relation as well as the conformance relation as a constraint satisfaction problem and use a constraint solver in our reachability and refinement checking algorithms. Explicit conformance checking techniques often face state space explosion. First experimental evaluations show that our approach has potential to outperform explicit conformance checkers.Comment: In Proceedings MBT 2012, arXiv:1202.582

    Correct and Efficient Antichain Algorithms for Refinement Checking

    Get PDF
    The notion of refinement plays an important role in software engineering. It is the basis of a stepwise development methodology in which the correctness of a system can be established by proving, or computing, that a system refines its specification. Wang et al. describe algorithms based on antichains for efficiently deciding trace refinement, stable failures refinement and failures-divergences refinement. We identify several issues pertaining to the soundness and performance in these algorithms and propose new, correct, antichain-based algorithms. Using a number of experiments we show that our algorithms outperform the original ones in terms of running time and memory usage. Furthermore, we show that additional run time improvements can be obtained by applying divergence-preserving branching bisimulation minimisation

    A theory of normed simulations

    Get PDF
    In existing simulation proof techniques, a single step in a lower-level specification may be simulated by an extended execution fragment in a higher-level one. As a result, it is cumbersome to mechanize these techniques using general purpose theorem provers. Moreover, it is undecidable whether a given relation is a simulation, even if tautology checking is decidable for the underlying specification logic. This paper introduces various types of normed simulations. In a normed simulation, each step in a lower-level specification can be simulated by at most one step in the higher-level one, for any related pair of states. In earlier work we demonstrated that normed simulations are quite useful as a vehicle for the formalization of refinement proofs via theorem provers. Here we show that normed simulations also have pleasant theoretical properties: (1) under some reasonable assumptions, it is decidable whether a given relation is a normed forward simulation, provided tautology checking is decidable for the underlying logic; (2) at the semantic level, normed forward and backward simulations together form a complete proof method for establishing behavior inclusion, provided that the higher-level specification has finite invisible nondeterminism.Comment: 31 pages, 10figure

    Refinement for Transition Systems with Responses

    Get PDF
    Motivated by the response pattern for property specifications and applications within flexible workflow management systems, we report upon an initial study of modal and mixed transition systems in which the must transitions are interpreted as must eventually, and in which implementations can contain may behaviors that are resolved at run-time. We propose Transition Systems with Responses (TSRs) as a suitable model for this study. We prove that TSRs correspond to a restricted class of mixed transition systems, which we refer to as the action-deterministic mixed transition systems. We show that TSRs allow for a natural definition of deadlocked and accepting states. We then transfer the standard definition of refinement for mixed transition systems to TSRs and prove that refinement does not preserve deadlock freedom. This leads to the proposal of safe refinements, which are those that preserve deadlock freedom. We exemplify the use of TSRs and (safe) refinements on a small medication workflow.Comment: In Proceedings FIT 2012, arXiv:1207.348

    Refinement for Probabilistic Systems with Nondeterminism

    Full text link
    Before we combine actions and probabilities two very obvious questions should be asked. Firstly, what does "the probability of an action" mean? Secondly, how does probability interact with nondeterminism? Neither question has a single universally agreed upon answer but by considering these questions at the outset we build a novel and hopefully intuitive probabilistic event-based formalism. In previous work we have characterised refinement via the notion of testing. Basically, if one system passes all the tests that another system passes (and maybe more) we say the first system is a refinement of the second. This is, in our view, an important way of characterising refinement, via the question "what sort of refinement should I be using?" We use testing in this paper as the basis for our refinement. We develop tests for probabilistic systems by analogy with the tests developed for non-probabilistic systems. We make sure that our probabilistic tests, when performed on non-probabilistic automata, give us refinement relations which agree with for those non-probabilistic automata. We formalise this property as a vertical refinement.Comment: In Proceedings Refine 2011, arXiv:1106.348
    corecore