51 research outputs found

    Dynamic Data Driven Application System for Wildfire Spread Simulation

    Get PDF
    Wildfires have significant impact on both ecosystems and human society. To effectively manage wildfires, simulation models are used to study and predict wildfire spread. The accuracy of wildfire spread simulations depends on many factors, including GIS data, fuel data, weather data, and high-fidelity wildfire behavior models. Unfortunately, due to the dynamic and complex nature of wildfire, it is impractical to obtain all these data with no error. Therefore, predictions from the simulation model will be different from what it is in a real wildfire. Without assimilating data from the real wildfire and dynamically adjusting the simulation, the difference between the simulation and the real wildfire is very likely to continuously grow. With the development of sensor technologies and the advance of computer infrastructure, dynamic data driven application systems (DDDAS) have become an active research area in recent years. In a DDDAS, data obtained from wireless sensors is fed into the simulation model to make predictions of the real system. This dynamic input is treated as the measurement to evaluate the output and adjust the states of the model, thus to improve simulation results. To improve the accuracy of wildfire spread simulations, we apply the concept of DDDAS to wildfire spread simulation by dynamically assimilating sensor data from real wildfires into the simulation model. The assimilation system relates the system model and the observation data of the true state, and uses analysis approaches to obtain state estimations. We employ Sequential Monte Carlo (SMC) methods (also called particle filters) to carry out data assimilation in this work. Based on the structure of DDDAS, this dissertation presents the data assimilation system and data assimilation results in wildfire spread simulations. We carry out sensitivity analysis for different densities, frequencies, and qualities of sensor data, and quantify the effectiveness of SMC methods based on different measurement metrics. Furthermore, to improve simulation results, the image-morphing technique is introduced into the DDDAS for wildfire spread simulation

    Simulation Software as a Service and Service-Oriented Simulation Experiment

    Get PDF
    Simulation software is being increasingly used in various domains for system analysis and/or behavior prediction. Traditionally, researchers and field experts need to have access to the computers that host the simulation software to do simulation experiments. With recent advances in cloud computing and Software as a Service (SaaS), a new paradigm is emerging where simulation software is used as services that are composed with others and dynamically influence each other for service-oriented simulation experiment on the Internet. The new service-oriented paradigm brings new research challenges in composing multiple simulation services in a meaningful and correct way for simulation experiments. To systematically support simulation software as a service (SimSaaS) and service-oriented simulation experiment, we propose a layered framework that includes five layers: an infrastructure layer, a simulation execution engine layer, a simulation service layer, a simulation experiment layer and finally a graphical user interface layer. Within this layered framework, we provide a specification for both simulation experiment and the involved individual simulation services. Such a formal specification is useful in order to support systematic compositions of simulation services as well as automatic deployment of composed services for carrying out simulation experiments. Built on this specification, we identify the issue of mismatch of time granularity and event granularity in composing simulation services at the pragmatic level, and develop four types of granularity handling agents to be associated with the couplings between services. The ultimate goal is to achieve standard and automated approaches for simulation service composition in the emerging service-oriented computing environment. Finally, to achieve more efficient service-oriented simulation, we develop a profile-based partitioning method that exploits a system’s dynamic behavior and uses it as a profile to guide the spatial partitioning for more efficient parallel simulation. We develop the work in this dissertation within the application context of wildfire spread simulation, and demonstrate the effectiveness of our work based on this application

    UAS Path Planning for Dynamical Wildfire Monitoring with Uneven Importance

    Get PDF
    Unmanned Aircraft Systems (UASs) offer many benefits in wildfire monitoring when compared to traditional wildfire monitoring technologies. When planning the path of an UAS for wildfire monitoring, it is important to consider the uneven propagation nature of the wildfire because different parts of the fire boundary demand different levels of monitoring attention (importance) based on the propagation speed. In addition, many of the existing works adopt a centralized approach for the path planning of the UASs. However, the use of centralized approaches is often limited in terms of applicability and adaptability. This work focuses on developing decentralized UAS path planning algorithms to autonomously monitor a spreading wildfire considering uneven importance. The algorithms allow the UASs to focus on the most active regions of a wildfire while still covering the entire fire perimeter. When monitoring a relatively smaller and spatially static fire, a single UAS might be adequate for the task. However, when monitoring a larger wildfire that is evolving dynamically in space and time, efficient and optimized use of multiple UASs is required. Based on this need, we also focus on decentralized and importance-based multi-UAS path planning for wildfire monitoring. The design, implementation, analysis, and simulation results have been discussed in details for both single-UAS and multi-UAS path planning algorithms. Experiment results show the effectiveness and robustness of the proposed algorithms for dynamic wildfire monitoring

    Towards a representation of environmenal models using specification and description language: from the fibonacci model to a wildfire model

    Get PDF
    In this paper we explore how we can use Specification and Description Language (SDL) to represent environmental models. Since the main concern in this kind of models is the representation of the geographical information data, we analyze how we can represent this information in the SDL diagrams. We base our approach using two examples, a representation of the Fibonacci function using a cellular automaton, and the representation of a wildfire model. To achieve this we propose the use of a language extension to Specification and Description Language. This allows the simplification of the representation of cellular automatons. Thanks this we can define the behavior of environmental models in a graphical way allowing its complete and unambiguous description. SDL is a modern object oriented formalism that allows the definition of distributed systems. It has focused on the modeling of reactive, state/event driven systems, and has been standardized by the International Telecommunications Union (ITU) in the Z.100.Postprint (published version

    Data Assimilation Based on Sequential Monte Carlo Methods for Dynamic Data Driven Simulation

    Get PDF
    Simulation models are widely used for studying and predicting dynamic behaviors of complex systems. Inaccurate simulation results are often inevitable due to imperfect model and inaccurate inputs. With the advances of sensor technology, it is possible to collect large amount of real time observation data from real systems during simulations. This gives rise to a new paradigm of Dynamic Data Driven Simulation (DDDS) where a simulation system dynamically assimilates real time observation data into a running model to improve simulation results. Data assimilation for DDDS is a challenging task because sophisticated simulation models often have: 1) nonlinear non-Gaussian behavior 2) non-analytical expressions of involved probability density functions 3) high dimensional state space 4) high computation cost. Due to these properties, most existing data assimilation methods fail to effectively support data assimilation for DDDS in one way or another. This work develops algorithms and software to perform data assimilation for dynamic data driven simulation through non-parametric statistic inference based on sequential Monte Carlo (SMC) methods (also called particle filters). A bootstrap particle filter based data assimilation framework is firstly developed, where the proposal distribution is constructed from simulation models and statistical cores of noises. The bootstrap particle filter-based framework is relatively easy to implement. However, it is ineffective when the uncertainty of simulation models is much larger than the observation model (i.e. peaked likelihood) or when rare events happen. To improve the effectiveness of data assimilation, a new data assimilation framework, named as the SenSim framework, is then proposed, which has a more advanced proposal distribution that uses knowledge from both simulation models and sensor readings. Both the bootstrap particle filter-based framework and the SenSim framework are applied and evaluated in two case studies: wildfire spread simulation, and lane-based traffic simulation. Experimental results demonstrate the effectiveness of the proposed data assimilation methods. A software package is also created to encapsulate the different components of SMC methods for supporting data assimilation of general simulation models

    Coupling the Advanced Regional Prediction System and the Discrete Event Specification Fire Spread Model to Predict Wildfire Behavior

    Get PDF
    The cost of wildfire suppression in the United States has risen dramatically over the last 20 years. As the interface between wildland and urban areas expands, increased emphasis is being placed on rapid, efficient deployment of firefighting resources. Various numerical models of wildfire spread have been developed to assist wildfire management efforts over the last several decades; however, the use of coupled fire-weather models to capture important feedbacks between the wildfire and the atmosphere is a relatively new development. This research evaluates a coupled system consisting of the Advanced Regional Prediction System (ARPS) atmospheric model and the raster-based Discrete Event Specification Fire Spread model (DEVS-FIRE). After the theoretical basis of coupled fire-atmosphere modeling and the basic design of previous vector-based models are outlined, idealized tests, verification using data from the FIREFLUX experiment, and case studies of the September 2000 Moore Branch Fire and the April 2011 Rock House Fire are presented. The current version of ARPS/DEVS-FIRE produces mixed results; broader-scale feedbacks appear to be represented somewhat skillfully, but the model also exhibits systematic flaws, which are exacerbated by efforts to depict fine-scale feedbacks or fire spread in high-wind cases. These results demonstrate the importance of coupled modeling and suggest improvements that must be made to ARPS/DEVS-FIRE before reliable results may be obtained

    Front Propagation in Random Media

    Get PDF
    This PhD thesis deals with the problem of the propagation of fronts under random circumstances. A statistical model to represent the motion of fronts when are evolving in a media characterized by microscopical randomness is discussed and expanded, in order to cope with three distinct applications: wild-land fire simulation, turbulent premixed combustion, biofilm modeling. In the studied formalism, the position of the average front is computed by making use of a sharp-front evolution method, such as the level set method. The microscopical spread of particles which takes place around the average front is given by the probability density function linked to the underlying diffusive process, that is supposedly known in advance. The adopted statistical front propagation framework allowed a deeper understanding of any studied field of application. The application of this model introduced eventually parameters whose impact on the physical observables of the front spread have been studied with Uncertainty Quantification and Sensitivity Analysis tools. In particular, metamodels for the front propagation system have been constructed in a non intrusive way, by making use of generalized Polynomial Chaos expansions and Gaussian Processes.The Thesis received funding from Basque Government through the BERC 2014-2017 program. It was also funded by the Spanish Ministry of Economy and Competitiveness MINECO via the BCAM Severo Ochoa SEV-2013-0323 accreditation. The PhD is fundend by La Caixa Foundation through the PhD grant “La Caixa 2014”. Funding from “Programma Operativo Nazionale Ricerca e Innovazione” (PONRI 2014-2020) , “Innotavive PhDs with Industrial Characterization” is kindly acknowledged for a research visit at the department of Mathematics and Applications “Renato Caccioppoli” of University “Federico II” of Naples

    Front propagation in random media.

    Get PDF
    244 p.This PhD thesis deals with the problem of the propagation of fronts under random circumstances. Astatistical model to represent the motion of fronts when are evolving in a media characterized bymicroscopical randomness is discussed and expanded, in order to cope with three distinctapplications: wild-land fire simulation, turbulent premixed combustion, biofilm modeling. In thestudied formalism, the position of the average front is computed by making use of a sharp-frontevolution method, such as the level set method. The microscopical spread of particles which takesplace around the average front is given by the probability density function linked to the underlyingdiffusive process, that is supposedly known in advance. The adopted statistical front propagationframework allowed a deeper understanding of any studied field of application. The application ofthis model introduced eventually parameters whose impact on the physical observables of the frontspread have been studied with Uncertainty Quantification and Sensitivity Analysis tools. Inparticular, metamodels for the front propagation system have been constructed in a non intrusiveway, by making use of generalized Polynomial Chaos expansions and Gaussian Processes.bcam:basque center for applied mathematic
    corecore