3 research outputs found

    DESIGN OF NOVEL MULTIPLEXER CIRCUITS IN QCA NANOCOMPUTING

    Get PDF
    Quantum-dot Cellular Automata (QCA) technology is a promising alternative nano-scale technology for CMOS technology. In digital circuits, a multiplexer is one of the most important components. In this study, an efficient and single layer 2 to 1 QCA multiplexer circuit is proposed using majority gate and inverter gate. In addition, efficient 4 to 1 and 8 to 1 QCA multiplexer circuits are implemented using this 2 to 1 multiplexer circuit. The developed multiplexer circuits are implemented in QCADesigner tool. According to the results, the developed 2 to 1, 4 to 1, and 8 to 1 multiplexer circuits utilize 16 (0.01μm2), 96 (0.11μm2), and 286 (0.43μm2) QCA cell (area). The results demonstrate that the proposed 8 to 1 multiplexer circuit reduces the cost by about 25%-99% compared to the existing multiplexer circuits

    SYNTHESIS OF COMPOSITE LOGIC GATE IN QCA EMBEDDING UNDERLYING REGULAR CLOCKING

    Get PDF
    Quantum-dot Cellular Automata (QCA) has emerged as one of the alternative technologies for current CMOS technology. It has the advantage of computing at a faster speed, consuming lower power, and work at Nano- Scale. Besides these advantages, QCA logic is limited to its primitive gates, majority voter and inverter only, results in limitation of cost-efficient logic circuit realization. Numerous designs have been proposed to realize various intricate logic gates in QCA at the penalty of non-uniform clocking and improper layout. This paper proposes a Composite Gate (CG) in QCA, which realizes all the essential digital logic gates such as AND, NAND, Inverter, OR, NOR, and exclusive gates like XOR and XNOR. Reportedly, the proposed design is the first of its kind to generate all basic logic in a single unit. The most striking feature of this work is the augmentation of the underlying clocking circuit with the logic block, making it a more realistic circuit. The Reliable, Efficient, and Scalable (RES) underlying regular clocking scheme is utilized to enhance the proposed design’s scalability and efficiency. The relevance of the proposed design is best cited with coplanar implementation of 2-input symmetric functions, achieving 33% gain in gate count and without any garbage output. The evaluation and analysis of dissipated energy for both the design have been carried out. The end product is verified using the QCADesigner2.0.3 simulator, and QCAPro is employed for the study of power dissipation
    corecore