10,661 research outputs found

    Small unmanned airborne systems to support oil and gas pipeline monitoring and mapping

    Get PDF
    Acknowledgments We thank Johan Havelaar, Aeryon Labs Inc., AeronVironment Inc. and Aeronautics Inc. for kindly permitting the use of materials in Fig. 1.Peer reviewedPublisher PD

    Unmanned aerial vehicle-based computer vision for structural vibration measurement and condition assessment: A concise survey

    Get PDF
    With the rapid advance in camera sensor technology, the acquisition of high-resolution images or videos has become extremely convenient and cost-effective. Computer vision that extracts semantic knowledge directly from digital images or videos, offers a promising solution for non-contact and full-field structural vibration measurement and condition assessment. Unmanned aerial vehicles (UAVs), also known as flying robots or drones, are being actively developed to suit a wide range of applications. Taking advantage of its excellent mobility and flexibility, camera-equipped UAV systems can facilitate the use of computer vision, thus enhancing the capacity of the structural condition assessment. The current article aims to provide a concise survey of the recent progress and applications of UAV-based computer vision in the field of structural dynamics. The different aspects to be discussed include the UAV system design and algorithmic development in computer vision. The main challenges, future trends, and opportunities to advance the technology and close the gap between research and practice will also be stated

    Bridge Inspection: Human Performance, Unmanned Aerial Systems and Automation

    Get PDF
    Unmanned aerial systems (UASs) have become of considerable private and commercial interest for a variety of jobs and entertainment in the past 10 years. This paper is a literature review of the state of practice for the United States bridge inspection programs and outlines how automated and unmanned bridge inspections can be made suitable for present and future needs. At its best, current technology limits UAS use to an assistive tool for the inspector to perform a bridge inspection faster, safer, and without traffic closure. The major challenges for UASs are satisfying restrictive Federal Aviation Administration regulations, control issues in a GPS-denied environment, pilot expenses and availability, time and cost allocated to tuning, maintenance, post-processing time, and acceptance of the collected data by bridge owners. Using UASs with self-navigation abilities and improving image-processing algorithms to provide results near real-time could revolutionize the bridge inspection industry by providing accurate, multi-use, autonomous three-dimensional models and damage identification

    A Routine and Post-disaster Road Corridor Monitoring Framework for the Increased Resilience of Road Infrastructures

    Get PDF

    A Systematic Literature Survey of Unmanned Aerial Vehicle Based Structural Health Monitoring

    Get PDF
    Unmanned Aerial Vehicles (UAVs) are being employed in a multitude of civil applications owing to their ease of use, low maintenance, affordability, high-mobility, and ability to hover. UAVs are being utilized for real-time monitoring of road traffic, providing wireless coverage, remote sensing, search and rescue operations, delivery of goods, security and surveillance, precision agriculture, and civil infrastructure inspection. They are the next big revolution in technology and civil infrastructure, and it is expected to dominate more than $45 billion market value. The thesis surveys the UAV assisted Structural Health Monitoring or SHM literature over the last decade and categorize UAVs based on their aerodynamics, payload, design of build, and its applications. Further, the thesis presents the payload product line to facilitate the SHM tasks, details the different applications of UAVs exploited in the last decade to support civil structures, and discusses the critical challenges faced in UASHM applications across various domains. Finally, the thesis presents two artificial neural network-based structural damage detection models and conducts a detailed performance evaluation on multiple platforms like edge computing and cloud computing

    Enhancing Road Infrastructure Monitoring: Integrating Drones for Weather-Aware Pothole Detection

    Get PDF
    The abstract outlines the research proposal focused on the utilization of Unmanned Aerial Vehicles (UAVs) for monitoring potholes in road infrastructure affected by various weather conditions. The study aims to investigate how different materials used to fill potholes, such as water, grass, sand, and snow-ice, are impacted by seasonal weather changes, ultimately affecting the performance of pavement structures. By integrating weather-aware monitoring techniques, the research seeks to enhance the rigidity and resilience of road surfaces, thereby contributing to more effective pavement management systems. The proposed methodology involves UAV image-based monitoring combined with advanced super-resolution algorithms to improve image refinement, particularly at high flight altitudes. Through case studies and experimental analysis, the study aims to assess the geometric precision of 3D models generated from aerial images, with a specific focus on road pavement distress monitoring. Overall, the research aims to address the challenges of traditional road failure detection methods by exploring cost-effective 3D detection techniques using UAV technology, thereby ensuring safer roadways for all users

    Development of UAS-Based Construction Stormwater Inspections & Soil Loss Model

    Get PDF
    Erosion and sediment control practices on construction sites provide vital protection for the environment, minimizing the impact from sediment-laden runoff associated with construction activities. Federal, state, and local regulations require regular inspections of erosion and sediment control practices to ensure their performance is adequate. This study developed an innovative approach to stormwater inspections and design guidance by integrating tools and guidance into aerial stormwater inspection outcomes. Aerial inspections were integrated with photogrammetry, geospatial information systems, and deep learning-based object detection applications to assist in performing inspections and develop site plans, hydrologic analyses, practice detection, and soil loss modeling. Orthomosaic views were used for creating site plans and developing object detection data sources. Digital Surface Models (DSMs) were developed as datasets for evaluating the performance of the E&SC practices on site. These surface models were used for running hydrologic analyses and developing soil loss models. The use of DSMs improves stormwater inspections and design approaches since DSMs serve as datasets for evaluating design efficiency with the incorporation of aerial inspection outcomes. Trial inspections were performed at the U.S. highway 30 construction site in Tama County, Iowa. Preliminary results were prepared to demonstrate a comprehensive framework for aerial inspections in future studies. This research introduces aerial inspections as an effective method to streamline inspection procedures. This could be in the form of using fewer inspectors, providing better record keeping, having faster inspection procedures and developing efficient outcomes to evaluate the performance of practices. The study highlights the potential for this technology and developed approaches to be used in the construction industry
    corecore