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Unmanned aerial vehicle-based computer vision for structural vibration
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A B S T R A C T

With the rapid advance in camera sensor technology, the acquisition of high-resolution images or videos has
become extremely convenient and cost-effective. Computer vision that extracts semantic knowledge directly from
digital images or videos, offers a promising solution for non-contact and full-field structural vibration measure-
ment and condition assessment. Unmanned aerial vehicles (UAVs), also known as flying robots or drones, are
being actively developed to suit a wide range of applications. Taking advantage of its excellent mobility and
flexibility, camera-equipped UAV systems can facilitate the use of computer vision, thus enhancing the capacity of
the structural condition assessment. The current article aims to provide a concise survey of the recent progress and
applications of UAV-based computer vision in the field of structural dynamics. The different aspects to be dis-
cussed include the UAV system design and algorithmic development in computer vision. The main challenges,
future trends, and opportunities to advance the technology and close the gap between research and practice will
also be stated.

1. Introduction

One of the important applications in the field of structural dynamics is
structural health monitoring (SHM), which aims at assessing the struc-
tural condition, reliability, and integrity through the measurement by
sensors, mostly accelerometers and strain gauges. For example, the
change in modal properties, such as natural frequencies, mode shapes
and their curvatures, and model strain energy, can be used to indicate the
damage occurrence (Shi et al., 1998; Qiao et al., 2007; Xia et al., 2002;
Hou et al., 2018). Smart materials offer another sensing mechanism for
effective damage detection. Among them, the piezoelectric transducer
(PZT), which is based upon self-sensing interrogation, has exhibited its
high sensitivity in detecting the electromechanical behavior change
caused by small-sized damage (Cao et al., 2023; Fan et al., 2018; Shuai
et al., 2017; Wang et al., 2013). Shape memory alloy, as another typical
smart materials, has also been successfully embedded into structures for
damage detection purposes (Bielefeldt et al., 2018; Davis et al., 2021).
Despite the success of damage detection using the above sensors, their
wide deployment in realistic engineering structures is hindered by
several reasons. First, each individual sensor that is physically attached

on the structure only allows the single-point measurement. To acquire
sufficient measurements for effective damage detection, many contact
sensors are required to distribute over the entire structure, leading to the
cumbersome sensor installation and placement of data acquisition (DAQ)
system (Feng and Feng, 2018). Second, the adverse effect of incorpo-
rating many contact sensors is the additional weight induced (i.e., un-
realistic loading), which alters the dynamic characteristics of the
structure, thereby resulting in the negative interference in damage
detection (Havaran and Mahmoudi, 2020). Finally, the sensor placement
becomes essential to ensure the desired damage detection performance,
which requires extra investigation (Zhou et al., 2017; Zhou and Wu,
2017; Wu et al., 2019a).

To address the above shortcomings of conventional sensing tech-
niques, significant efforts have been made to develop non-contact full-
field sensing techniques for SHM. By utilizing the laser doppler effect due
to the structural motion, the scanning laser doppler vibrometer (SLDV) is
able to continuously scan the measurement points over the surface of a
sinusoidal excited structure, enabling the full-field vibration measure-
ment (Stanbridge and Ewins, 1999). Noteworthy, SLDV can also be used
to conduct the experimental wave propagation analysis, which directly
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facilitates damage detection. Specifically, the high-frequency wave, i.e.,
ultrasonic wave can be excited and propagated through the entire
structure to construct the wavefield. The wavefield contains the wave
propagation characteristics with respect to the time, from which the
suspicious damage can be localized when a sudden change of the wave
propagation characteristics is observed (Kudela et al., 2017; Maio et al.,
2018; Pieczonka et al., 2017). While SLDV has been well established as a
valuable instrument for nondestructive testing (NDT) in the structural
dynamics community, SLDV has some notable drawbacks. SLDV requires
a long testing time because it measures all of the discrete points on the
structure sequentially rather than concurrently (Reu et al., 2017). SLDV
usually is placed close to the target/object, which makes it ineffective for
large-scale and inaccessible engineering structures, such as offshore wind
turbines. Besides, SLDV is expensive and bulky, which is not suited to
actual implementation scenarios (Maio et al., 2018).

As a relatively new technology, machine vision-based sensing well
overcomes the disadvantages of SLDV and thus shows a promising
prospect in vibration measurement. Machine vision-based sensing
generally refers to the high-speed camera-based image and video
recording. The key aspect of this sensing technique is image processing,
which directly analyzes the images and then extracts the vibrations. Over
the past decade, various image processing techniques have been devel-
oped to empower machine vision-based sensing. A technique so called
phase-based motion magnification can be applied to a series of motion
frames/images in a video from the high-speed camera to quantify the full
state of motion of a structure/system. This technique has been success-
fully employed for structures/systems in various industries (Eitner et al.,
2021; Sarrafi et al., 2018; Chen et al., 2018; Poozesh et al., 2017).
Additionally, digital image correlation (DIC) has become mainstream in
image processing for vibration measurement (Trebu�na and Hagara,
2014; Hu�nady et al., 2019; Beberniss and Ehrhardt, 2017; Helfrick et al.,
2011). A stereo camera setup is required to implement the DIC analysis. A
stereo camera has two or more lens, which is designed to mimic human
binocular vision. The images recorded from the different lens can be used
to estimate the 3-dimensional coordinates of points on a target/object via
the so-called photogrammetry, thus realizing the vibration measurement
(Niezrecki et al., 2010). As a target-based method, the artificial speckle
pattern needs to be mounted on the target to ensure the robustness of the
measurement (Helfrick et al., 2011). In contrast to the target-based
method, the targetless approaches, such as edge detection and tracking
technique and its variants, have also been widely used for vibration
measurement (Bai et al., 2020a; Javed et al., 2022). The sufficient vi-
bration information from the full-field measurement significantly bene-
fits the subsequent model updating procedures for structural damage
identification (Zhou and Tang, 2021a, 2021b; Weng et al., 2011;
Adeagbo et al., 2021; Wang et al., 2018; Hua et al., 2008).

Noteworthy, the images already contain detailed information on the
structure surface. In other words, the defect on the structure surface is
visible in nature, which allows direct detection without the intermediate
step on vibration measurement as mentioned above. Thanks to the
advent of deep learning, especially in computer vision, direct damage
detection based on the image becomes entirely possible. In recent years,
deep learning enabled computer vision has seen a surge of interest
because of its power to directly interpret images. Deep learning methods
have been continuously developed and enhanced in order to broaden the
applications in diverse scientific disciplines. From the machine learning
perspective, damage detection using computer vision, fundamentally
belongs to either the object detection, image classification, or segmen-
tation task (Deng et al., 2020; Zhang et al., 2020a; Huang et al., 2020).
Depending on the image quality, image preprocessing becomes one
favorable option prior to implementing the computer vision. For
example, image denoising and image deblurring are the most commonly
adopted image preprocessing procedures (Wang and Tao, 2014; Fan
et al., 2019). Using the fixed camera system for image acquisition fol-
lowed by computer vision for damage detection has been reported in
several studies (Huang et al., 2020; Li et al., 2019; Cha et al., 2017).

The dynamic camera systems have evolved along with the rapid
development of robotic technology. It is evident that the dynamic camera
systems offer great mobility during image acquisition, which are superior
to the fixed camera system. There are various types of dynamic camera
systems that have been purposely designed to fulfill different missions.
For example, inspection vehicle (Nagaya et al., 2012; Ekkachai et al.,
2022; Nakamura et al., 2019) and climbing robot (Jang et al., 2021;
Nguyen and La, 2019, 2021; Wang et al., 2017) have been found with
effectiveness in conducting the inspection tasks. UAV, also known as
drone, on the other hand, is a prominent technique to carry the portable
cameras for remote sensing purposes. Compared to the fixed and other
dynamic camera systems, UAV has excellent mobility and wide area
coverage, which ensures its good accessibility to remote engineering
structures. Furthermore, UAV can essentially be deemed an advanced
camera system, which is subject to secondary development/design to suit
broad applications. To the best of our knowledge, such system redesign
generally involves hardware development including but not limited to 1).
Different types of cameras can be installed on the UAV with real-time
information exchange; 2). Onboard computing unit, i.e., CPU can be
installed on the UAV, leading to the computer vision enabled UAV, which
can further leverage the Internet of Things (IoT) technology to advance
SHM capacity. 3). Control system can be embedded into the UAV to
guide/manage the UAV flight trajectory to adapt to the missions under
different weather conditions. By appropriately designing the flight tra-
jectory, the images can be captured from the entire angular field of view,
which are used to construct the virtual reality (VR) and augmented re-
ality (AR) environments. For these reasons, UAV-based vision can be
tailored for a broad range of applications, including but not limited to the
injury surveillance/monitoring/detection, safety assessment in the
emergency situations and hazard events, traffic flow estimation and
highway infrastructure management, etc (Andriluka et al., 2010; Brunetti
et al., 2018; Khan et al., 2020; Allouch et al., 2019; Zacharie et al., 2018;
Outay et al., 2020).

It is noted that UAV-based vision recently has become a trending
technology for remote vibration measurement and structural damage
detection. Using the search keywords [“vibration measurement” or “dam-
age detection” and “unmanned aerial vehicle”] within Scopus database, the
number of articles over the past few years is identified and shown in
Fig. 1. The chart clearly indicates the rapid growth of recent interest in
this research topic and relevant progresses that have been achieved.
Khadka et al. proposed a robust practice for wind turbine monitoring by
utilizing a DIC system with the UAV as a mainstay. A laboratory testing
on a scale-down wind turbine system was carried out to validate the
method (Khadka et al., 2020). Following the similar idea, Chen et al.
applied this method onto bridge vibration measurement (Chen et al.,

Fig. 1. Research outcome over the years according to Scopus database.
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2021). Hallermann and Morgenthal used UAV for the visual inspection of
large bridges, which was a pilot study to prove the computer vision
concept for automatic damage detection (Hallermann and Morgenthal,
2014). Wang et al. developed a graphics-based digital twin (GBDT)
framework that is built upon the physical FE modeling and computer
vision for post-earthquake structural inspection and evaluation. The
effectiveness of the framework is validated by the UAV-based inspection
on a five-story reinforced concrete benchmark building (Wang et al.,
2022a). As will be shown later, more literature will be systematically
reviewed and discussed in terms of various aspects ranging from hard-
ware configuration, and algorithmic development to application. This
article will also discuss the current challenges of UAV-based applications
in structural dynamics and point out the potential improvements for
advancement. Within the context of the UAV applications, this review
article will be limited to a narrower scope, compared to the existing review
articles, on the computer vision-based structural dynamics (Bao et al.,
2019; Xu and Brownjohn, 2018; Dong and Catbas, 2021) and robotics
technologies for infrastructure inspection (Lee et al., 2023). This thus
makes the unique contribution to research community.

2. UAV system, image acquisition, and preprocessing for quality
assurance

UAV products/systems for professional and research use are from a
wide range of developers and manufacturers, including Ascending Tech-
nologies, Applanix, DJI technology, etc. In addition to the standard UAV
products, customized solutions will also be provided by those UAV
manufacturers for specific purposes and missions. As shown in Fig. 2,
UAV systems can be generally classified into four categories, namely
single-rotor UAV, multi-rotor UAV, fixed-wing UAV, and hybrid fixed-
wing UAV. According to the number of rotors, multi-rotor UAV can be
further classified into Tricopter, Quadcopter, Hexacopter, and Octocopter.
While the UAV systems can be utilized for a vast variety of applications
and can be designed with complete hardware units to accommodate
certain challenging tasks, in this section, we only collect information of
UAV systems used for structural dynamics applications, with a specific
emphasis on the UAV type, and camera model and its key specification.

The details of UAV systems are briefly summarized in Table 1. From the
collected literature, the mostly used UAV models are manufactured from
theDJI technology, and the multi-rotor UAV apparently is a dominant type
in applications. The reason may lie in that multi-rotor UAV has good
maneuverability, which can hover in place and fly towards different di-
rections without the need to change the orientation. Among all multi-
rotor UAV types, Quadcopter appears to be the most popular one as it
has relatively small weight and low cost compared to Hexacopter and
Octocopter. Moreover, one may notice that dual cameras are installed in
some UAVs, the intention of which is to form a stereo camera system to
facilitate photogrammetry. This will be introduced in detail later.

Once the image acquisition using the UAV camera system is complete,
an image preprocessing procedure is preferably carried out to ensure
good-quality images for the sake of subsequent analysis. The pre-
processing is especially necessary for outdoor image acquisition due to its
vulnerability to weather conditions. The selection of image preprocessing
methods is case-dependent. Some typical image preprocessing methods
include image denoising and filtering, image deblurring, image normal-
ization, and image augmentation. Because of the imperfect instrumen-
tation during the data acquisition, the images are inevitably
contaminated by noise. As such, denoising the images is a critical and
frequently adopted method of image preprocessing. Research on image
denoising technique development has continued over a few decades.
Image denoising is implemented by different types of algorithms, ranging
from spatial filtering, transform domain filtering to data-driven trans-
form (such as independent component analysis (ICA)) (Ahmadi et al.,
2013). In each type of algorithms, linear or nonlinear filters can be
employed depending on the collected images. Linear filters usually deal
with signal corruption by Gaussian noise in the sense of mean square
error. As a representative linear filter, the mean filter smooths the images
by reducing the intensity variation between adjacent pixels. It essentially
is a sliding window spatial filter that replaces the center value in the
window with the average of all the neighboring pixel values (Ahamed
et al., 2019). Compared to linear filters, nonlinear filters effectively
remove other types of noises that cannot be explicitly represented. A
variety of median-type filters have been developed for nonlinear filtering
purposes. Given the current pixel being considered, the filtering first sorts

Fig. 2. UAV types (a) single-rotor UAV; (b) multi-rotor UAV; (c) fixed-wing UAV; (d) hybrid fixed-wing UAV.
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all the neighboring pixel values with a numerical order and then replaces
the current pixel with the median pixel value. Such filtering process is
mathematically described as

~pi;j ¼med
�
s
�
pi;j

��
(1)

where pi;j is the value of pixel at i-th and j-th positions in horizontal and
vertical directions of an image, respectively. ~pi;j is a new pixel value. sð:Þ
denotes the operator to identify all neighboring pixels of pi;j.med(.) is the
operator to find the median pixel value.

Since the UAV is fast-moving, the images captured might exhibit
significant blurriness, i.e., motion blur. This issue may further be com-
pounded by windy weather. Other different types of blurs also will be
induced, such as defocus blur and atmospheric turbulence blur. To
identify the cause of image blur, it is necessary to look into the imaging
process, which generally can be formulated as (Wang and Tao, 2014)

y¼ f ðx*hÞ þ n (2)

where x is the latent sharp image from the geometric operator, and h is
the approximated blur kernel. f ð:Þ denotes the nonlinear camera response
function. n denotes the noise. For simplification, the linear camera
response is considered, and Equation (2) can then be re-written as

y¼ x*hþ n (3)

Given the above equation, the aim of the image deblurring is to
recover an accurate x or to recover both x and h (blind deblurring) from
the observation y, which fundamentally is an inverse problem to be
solved. As can be seen in Equation (3), image deblurring can be treated as
a convolution process. Solving the inverse problem hence resorts to the
deconvolution technique. Due to its inverse nature, deconvolution can be
facilitated by employing widely available optimization algorithms (Wipf
and Zhang, 2015; Cai et al., 2018; Tai et al., 2008). It is worth noting that
deblurring images may cause noise effects in some scenarios because of
the resulting image sharpness, which requires extra investigation to
reach a satisfactory compromise/trade-off (Mitra et al., 2014).

Image normalization is a procedure to change the range of pixel in-
tensity values in the image, which establishes a reference for different
sets of images taken under various illumination/lighting conditions. This
is especially useful for UAV-based image acquisition because the task is
executed at the outdoor environment. With the growing demand for
UAV-based image acquisition, image normalization has been increas-
ingly adopted (Lu et al., 2011; Yan et al., 2019; Thompson and Puntel,
2020). Different from the image denoising, deblurring, and normaliza-
tion mentioned above, image augmentation aims to artificially create
extra images through the multiple types of operations on the existing
images, such as rotation, shift, flip, etc. (Shorten and Khoshgoftaar,
2019). As will be shown later, image augmentation is a necessary step to
adequately train a complex deep learning model and minimize the like-
lihood of model overfitting when the available training dataset is limited.

3. Digital image processing for non-contact and full-field
vibration measurement

Digital image processing is a dispersible part of computer vision,
which is found to be a prominent tool for extracting dynamic vibrations
from images or videos. It is important to note that the concept of image
processing differs from that of image preprocessing mentioned previously.
Image preprocessing is closely relevant to image clean-up for quality
improvement, while image processing tends to utilize complex trans-
formation to retrieve useful information which cannot be visually ob-
tained from the images.

Many different methods have been developed thanks to continuous
and extensive image processing research. One important class of image
processing methods is the so-called digital image correlation (DIC). DIC
uses two cameras, i.e., a stereo pair of cameras to establish the binocular
vision for in-plane and out-of-plane displacement measurements (i.e., 3-
dimensional measurement) based on the theory of photogrammetry. DIC
first builds the mapping relations between the image coordinates of the
right camera and real space coordinates and between the image co-
ordinates of the left camera and real space coordinates. Then, the real
space coordinates can be computed from the constraint associated with
the overlapping coordinates of the target points in both images. Fig. 3
shows the schematic to calculate the coordinates, i.e., ½XW ;YW ;ZW � in the
real space based upon the coordinates of the target points using the
binocular vision based DIC. Detailed mathematical derivations can be
found in (Wang et al., 2019) for interested audiences. As can be observed,
the target points are required to implement the DIC analysis, and the
structure may not have the texture features to be used as target points.
The additional set of artificial target points, such as speckle patterns and
optical targets, hence, need to be placed on the structure. Overall, the DIC
method is very robust, enabling a wide range of applications in multiple

Table 1
UAV camera systems used in structural dynamics applications.

Reference UAV Type, (Manufacturer and
Model)

Camera and Resolution

Hallermann and
Morgenthal
(2014)

Multi-rotor UAV, Octocopter
(Ascending Technologies: BUW
Falcon)

Panasonic Lumix DMC
TZ: 14.1 megapixels
Sony Nex 5 22: 14.2
megapixels

Khadka et al.
(2020, 2022)

Multi-rotor UAV, Octocopter Two Point Grey GS3-
U3-32S4M� C cameras:
3.2 megapixels

Wang et al.
(2022b)

Mutli-rotor UAV, Quadcopter (DJI
technology: Mavic Pro)

Integrated camera: 12
megapixels

Li et al. (2022a);
Xiong et al.
(2020)

Mutli-rotor UAV, Quadcopter (DJI
technology: Phantom 4 Pro)

Integrated camera: 20
megapixels

Zhang et al. (2017);
Pierce et al.
(2018)

Multi-rotor UAV, Hexacopter
(Ascending Technologies: Firefly)

CM3-U3-50S5CCS
camera: 4 megapixels

Rao et al. (2019) Mutli-rotor UAV, Quadcopter Integrated camera: 1
megapixel

Zhang et al. (2022) Mutli-rotor UAV, Quadcopter (DJI
technology: Mavic Air 2)

Integrated camera: 12
megapixels

PengLinLiu (2021) Mutli-rotor UAV, Quadcopter Integrated miniature
camera: 0.24
megapixels

Eschmann et al.
(2012)

Mutli-rotor UAV, Octocopter
(Mikrokopter MAV platform)

Canon PowerShot
SX220 HS: 12
megapixels

Taj et al. (2020) Mutli-rotor UAV, Quadcopter (DJI
technology: Mavic Mini)

Integrated camera: 12
megapixels

Ayele et al. (2020) Mutli-rotor UAV, Quadcopter (DJI
technology: Matrice 100)

Integrated aerial zoom
cameras: 12.4
megapixels

Kim et al. (2018) Mutli-rotor UAV, Quadcopter (DJI
technology: Inspire 2)

Zenmuse X5S camera:
15.7 megapixels

Alzarrad et al.
(2022)

Mutli-rotor UAV, Quadcopter (DJI
technology: Matrice 300 RTK)

Zenmuse H20T camara:
12 megapixels

Santos et al. (2022) Mutli-rotor UAVs, Quadcopter
(DJI technology: Mavic Mini),
Octocopter (DJI technology:
Matrice 600 Pro)

Integrated camera: 12
megapixels
Zenmuse X5 camara: 16
megapixels

Wen and Kang
(2014)

Mutli-rotor UAV, Hexacopter (DJI
technology)

Sony NEX-5R w/
SEL16F28: 16.1
megapixels

Reagan et al.
(2017, 2018)

Multi-rotor UAV, Quadcopter
(Physical Science, Inc.: InstantEye
Gen4)

Integrated cameras: 2
megapixels

La et al. (2019) Mutli-rotor UAV, Octocopter
(UAV Systems International:
TAROT X8)

Point Grey GS3-U3-
32S4M � C camera: 3.2
megapixels

Liu et al. (2022) Mutli-rotor UAV, Quadcopter (DJI
technology: Phantom 4 Pro)

Xiaomi 12S Ultra: 50
megapixels
Integrated camera: 20
megapixels

Lianpo (2022) Fixed-wing UAV (Sensefly) Canon S 110 RGB: 12
megapixels
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areas (Helfrick et al., 2011; Gencturk et al., 2014; Pan et al., 2009; Sanz
et al., 2010). Point tracking (PT) is another representative method for
target-based image processing. The target centers are detected using an
ellipse search algorithm, and the coordinates of the points in the real
space are then identified using triangulation. Three-dimensional point
tracking (3DPT) computes the displacement of the targets by tracking
them in different time stages and comparing their coordinates with the
reference stage. The artificial target points mounted on the structure
using PT usually is larger than that using DIC (Baqersad et al., 2017).

Other methods have also been developed to meet the increasing
needs of image processing. In contrast to the target-based methods, the
targetless methods search for the illumination change or defined
shapes in the structure and thus do not need speckle patterns attached
(Ferrer et al., 2015). In other words, the targetless methods use the
existing geometry features of the structure as the targets. The most
common targetless methods include edge detection, pattern matching,
and blob detection methods (Baqersad et al., 2017). Among them, edge
detection methods are most frequently used. As will be shown in the
subsequent section, edge detection methods have also been used to
directly identify and quantify the damage from the image. While the
targetless methods can be implemented without placing the extra
artificial target and generally feature less computational complexity
than the target-based methods, their notable drawback is the inferior
accuracy and robustness compared to the target-based methods,
especially when the images are unclear and have bad intensity contrast
between the background and structure. This causes the internal fea-
tures difficult to be tracked.

Recently, new image processing techniques, collectively called mo-
tion magnification were introduced to magnify the small motions in the
camera-captured videos (can be treated as a series of sequential images/
frames) for vibration measurement. The basic principle behind motion
magnification is to obtain a representation of the video in which the
signals representing the motions of the structure can be time-frequency
bandpass filtered, and amplified. With this, a new motion magnified
video will be reconstructed (Shao et al., 2022; Chen et al., 2015). The
phase-based motion magnification originally proposed by (Wadhwa
et al., 2013), and its variants have been popularly adopted. This tech-
nique decomposes each signal/image of a video into spatially structured
images of different scales and orientations using complex-valued steer-
able pyramid filters (Shao et al., 2022). The phase signals at each

location, orientation, and scale then are temporally bandpass filtered,
amplified, and reconstructed. The entire process workflow is provided by
(Chen et al., 2015), shown in Fig. 4. Compared to the abovementioned
methods, phase-based motion magnification can ensure a high
signal-to-noise ratio (SNR) at high frequencies, leading to the enhanced
accuracy of the high-frequency vibration measurement.

The template matching method tends to move the template over the
entire image and evaluate the similarity between the template and the
sliding window in the image. This process can be mathematically rep-
resented as a two-dimensional convolution (Kerwin, 2009). The general
metric for similarity measurement is the normalized correlation coeffi-
cient (NCC), which is expressed as (Han et al., 2022)

Rðx; yÞ¼
X
x0 ;y0

ðT 0 ðx; yÞ*I 0 ðxþ x
0
; yþ y

0 ÞÞ (4)

where T
0
and I

0
denote the image and template, respectively, after

normalization through

T
0 ðx; yÞ¼

Tðx; yÞ � 1
w�h

P
x0 ;y0

Tðx0 ; y0 Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x0 ;y0

Tðx0 ; y0 Þ2
r (5a)

I
0 ðx; yÞ¼

Iðx; yÞ � 1
w�h

P
x0 ;y0

Iðx0 ; y0 Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x0 ;y0

Iðx0 ; y0 Þ2
r (5b)

There are other available metrics for the matching function, such as
the sum of squared difference (SSD) (Hisham et al., 2015) and orientation
code matching (OCM) (Ullah and Kaneko, 2004).

The rapidly growing demand of using image processing for diverse
applications boosts the releases of some photogrammetry software, such
as ContextCapture (developed by Bentley Systems), PONTOS™ (devel-
oped by GOM) to facilitate the project implementation. Due to the
increasing utilization of UAV for image acquisition in recent years, digital
image processing methods have started with applications for vibration
measurement. It, however, is worth mentioning that some methods, such
as phase-based motion magnification, only have been employed using
the stationary high-speed camera instead of the UAV-based camera

Fig. 3. Schematic of binocular vision-based DIC. Adapted with permission from (Wang et al., 2019).
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system (Sarrafi et al., 2018; Yang et al., 2017; Peng et al., 2020; An and Il
Lee, 2022). The relevant studies are summarized in Table 2.

4. Computer vision for structural condition assessment

The vibration measured is the key information for inverse model
updating-based structural condition assessment. While the inverse model
updating that is built upon a physical baselinemodel appears to be a well-
established methodology, it is challenging to construct a high-fidelity
physical model for certain complex scenarios and to incorporate the
entire image pixels directly into the updating process. As a result, there
are rare studies that fall into this specific topic. Computer vision, on the
other hand, is tailored to UAV image-based damage detection because it
intends to gain a high-level understanding of the damage related features
of digital images. This section hence will comprehensively review and

discuss the state of the art that utilizes the computer vision techniques for
structural condition assessment. It is worth pointing out that for accurate
damage size estimation, i.e., 3-dimensional (3D) damage quantification,
3D vision sensor that is comprised of stereo setup of multiple 2D vision
sensors usually is adopted to facilitate the implementation of the com-
puter vision techniques (Yuan et al., 2022). In general, computer vision
techniques for damage detection consist of two folders, i.e., image pro-
cessing and machine learning.

4.1. Image processing in computer vision for damage detection

Given the premise that the RGB values of pixels in damage differ from
that in the image background, image processing is expected to detect,
locate damage, and then quantify the damage size by analyzing the image
pixels. Some image processing methods for vibration measurement

Fig. 4. Workflow of phase-based motion magnification (a) complex steerable pyramid filters decompose the video into the amplitude and phase at different scales; (b)
decomposed phases are bandpass filtered in frequency; (c) amplitude-weighted smoothing is applied; (d) bandpassed phases are amplified; (e) new video is recon-
structed. Reprinted with permission from (Chen et al., 2015).

Table 2
Summary of the state-of-the-art image processing methods for UAV-based vibration measurement.

Method Description Application

Digital image correlation (DIC) and 3D point tracking (PT) Lab-scale truss bridge vibration measurement (Chen et al., 2021; Wu et al., 2021; Zhang
et al., 2021); scaled-down wind turbine blade vibration measurement (Khadka et al., 2020,
2022); infield vibration measurement of an actual wind turbine (Ozbek et al., 2010);
vibration measurement of a supported wooden beam (Liu et al., 2022); vibration
measurement of a scaled bridge girder and an actual bridge deck (Kumarapu et al., 2022);
vibration measurement of two in-service concrete bridges (Reagan et al., 2018);
displacement measurement of landslide (Lianpo, 2022); vibration measurement of an
infrastructure system (Report and Bas, 2022)

Edge detection and its variants Tower-swaying displacement measurement (Khuc et al., 2020); detection of motion of the
objects in aerial images (Cu et al., 2018); vibration detection of the buildings and streets
(Afolabi et al., 2015)

Template matching and its variants Vibration measurement of a lab-scale two-story shear frame and an actual bridge (Han et al.,
2022); vibration measurement of a multiple-purpose testing system (MTS) (Bai and Yang,
2021); deformation measurement of an ancient tower (Ye et al., 2021)

Other
methods

Homograph transformation Displacement measurement of a lab-scale six-story shear-building model and an actual
elevator tower (Weng et al., 2021)

Heuristic image processing with numerical integration Displacement measurement of a target fixed to a massive reinforced concrete (RC) wall
(Ribeiro et al., 2021)

Target identification with direct linear transformation (DLT) Vibration measurement of cantilever plate in the laboratory (Perry and Guo, 2021)
Image-to-point cloud conversion followed by the optimization
algorithm to identify the fitting plane

Vibration measurement of a numerical building model (Sun et al., 2022)

A framework consists of sequential steps: optimal imaging, local feature
extraction, optimal matching, and a combined adjustment

Displacement measurement of the soil nail walls (Esmaeili et al., 2019)

Convolutional neural networks (CNNs) with Kanade–Lucas–Tomasi
(KLT) optical-flow method

Lab-scale truss bridge vibration measurement (Yan et al., 2022)
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(introduced in Section 3) can be extended for direct damage detection
following the same principle. Among those methods, the edge detection
method that identifies the points in an image with discontinuities, i.e.,
sharp changes in image brightness, plays a predominant role. These
points where the image brightness varies sharply are defined as edges of
the image (Dhankhar and Sahu, 2013). Some commonly used edge de-
tectors include Sobel edge detectors, Canny edge detectors, Prewitt edge
detectors, and Laplacian edge detectors. The Sobel edge detector is built
upon the spatial gradient algorithm that can detect the gradient, i.e.,
change in image intensity. The image is convolved with a Sobel mask,
resulting in the first-order partial derivatives. Two convolution masks
with size 3� 3 usually are adopted to compute the derivatives in both x
and y directions of the image. They are described as (Abdel-Qader et al.,
2003)

Mx ¼
2
4 1 2 1

0 0 0
�1 �2 �1

3
5 My ¼

2
4�1 0 1
�2 0 2
�1 0 1

3
5 (6)

While the Canny edge detector also is a convolution filter, it is slightly
more powerful than the Sobel edge detector. When using Canny edge
detector, an image is first smoothed by convolving with a Gaussian mask
to eliminate the noise. The edges then are detected at the maxima of the
gradient. Following these procedures, this detector can generate an edge
strength and direction at each pixel in the smoothed image. Because of
their simplicity and effectiveness, edge detection methods have been
employed for processing UAV images and thus facilitate damage detec-
tion of different engineering structures, for example, concrete bridge
monitoring (Yu et al., 2017), road damage detection (Nappo et al., 2020;
Sui et al., 2014), and building crack inspection (Choi and Kim, 2015).

Some transform methods that originally were intended for signal
processing analysis, e.g., fast Fourier transform (FFT) and fast Haar
transform (FHT), have also been proven effective in processing UAV-
taken images for damage detection (Abdel-Qader et al., 2003). In the
context of imaging processing, FFT is an algorithm to characterize the
interconversion between the spatial domain representation and the fre-
quency domain representation of images, while FHT is a relatively new
algorithm, decomposing the image into different low-frequency and
high-frequency components, followed by the high-frequency component
isolation to identify the edge features of an image (Abdel-Qader et al.,
2003). Moreover, mathematical morphology (MM) is another powerful
algorithm to distinguish various shapes and sizes from the image through
time-domain analysis. MM employs set operator to conduct the image
transformation by taking their topological and geometric properties into
account. The basic morphological set transformations are erosion and
dilation. Erosion removes small objects and disconnects objects connected
by a small bridge, while dilation fills holes and smoothens the contour
lines in the image. The main advantage of MM is to preserve the original
geometry features of the large objects. As a comparison, the Gaussian
mask used to remove the noise in the abovementioned edge detection
methods may blur the image. With MM as an image processing tool, UAV
images can be appropriately handled to facilitate the condition moni-
toring tasks (Wu et al., 2020; Oliveira et al., 2018; Galantucci and Fati-
guso, 2019). In addition to the above well-established methods, other
advanced methods have also been developed to improve image pro-
cessing capability. Kim et al. developed a hybrid image processing
method that performs the hybrid binarization of UAV-taken images for
concrete crack estimation while minimizing the loss of other useful in-
formation in the image (Kim et al., 2017). Lei et al. developed a new
image processing method for crack detection, namely the crack central
point method (CCPM), which improves the detection robustness under
relatively fuzzy and low-contrast images (Lei et al., 2018). Kakooei and
Baleghi established a new framework built upon the building environ-
ment and image processing techniques and applied it to UAV oblique
images to assess the poster-disaster damage. The image datasets collected
under different earthquake scenarios were used to comprehensively

verify the methodology (Kakooei and Baleghi, 2017). Continuous
development of image processing methods is vital in advancing
UAV-based SHM technology.

4.2. Machine learning in computer vision for damage detection

While image processing has demonstrated its feasibility in damage
detection, it essentially only facilitates decision making and cannot
automate/streamline the whole detection process. To circumvent such
issue, machine learning that inherently is built upon data-driven
modeling sheds a new light for damage detection. Indeed, some
traditional machine learning methods, such as support vector machine
(SVM), and K-nearest neighbors (KNN), have been practiced on UAV-
based damage detection (Ichi and Dorafshan, 2022; Avola et al.,
2021; Chen and Liu, 2021; Zhang et al., 2020b). However, the data
preprocessing step, e.g., feature extraction and dimension reduction of
UAV-taken images is required to implement those methods. Deep
learning, as a new class of machine learning methods, primarily in-
herits the neural network architecture and can be performed without
the data preprocessing. It is well known that the convolutional neural
network (CNN) offers a baseline deep learning architecture, based
upon which many variants of deep learning neural networks have been
developed to broaden the applications with enhanced performance.
While numerous studies exploiting deep learning methods can be
found, we will particularly be interested in discussing the deep
learning methods in the context of UAV-based damage detection and
condition assessment.

Some representative studies with significant attention (indicated by
the citation number) will be emphasized. Shihavuddin et al. applied a
series of deep learning models together with the UAV inspection images
to conduct the wind turbine surface damage detection. In this work, four
different types of surface conditions including i.e., leading edge (LE)
erosion, vortex generator (VG) panel, vortex generator (VG) panel with
missing teeth, and lightning receptor are considered in the UAV inspec-
tion images (Fig. 5a). Among different models, the model with Inception-
ResNet-V2 architecture shows the best damage detection accuracy that
was evaluated by Mean Average Precision (MAP). The effect of data
augmentation on deep learning performance was also investigated. It was
found that the data augmentation indeed can serve as the performance
multiplier (Shihavuddin et al., 2019). The implementation flowchart of
the damage detection is shown in Fig. 5b.

Xiong et al. developed an automated building seismic damage
assessment using a UAV and a convolutional neural network (CNN). The
3-D building model was first built for UAV-taken building image seg-
mentation. Treating segmented images and respective damage states
(each damage state represents a class) as input and output, respectively, a
CNN classifier with VGG-16 transfer learning then was established and
the classification accuracy was thoroughly examined. The proposed
methodology enables the prediction of the region-based distribution of
building seismic damages, which benefits emergency relief (Xiong et al.,
2020). The framework of the proposed methodology is shown in Fig. 6.
Similarly, Gopalakrishnan et al. proposed to use a pre-trained VGG-16
CNN for crack detection of civil infrastructure based on the UAV-taken
images. The deep learning method in this work essentially serves the
binary classification task (i.e., crack and intact states). The results show
that the proposed method can yield up to 90% accuracy in crack detec-
tion in realistic scenarios without any augmentation and preprocessing
(Gopalakrishnan et al., 2018).

The extensive studies are discussed in terms of the deep learning
method/model details, analysis type, application, and outcome, which
are put together in Table 3.

As can be seen, most of the methods were applied to large-scale civil
infrastructure, such as buildings, bridges, and wind turbines, because the
advantage of UAV-based vision can be fully exploited. Involving more
damage conditions indeed leads to the increasing data acquisition cost.
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Also, the field image acquisition is conducted on the actual structures, in
which the damage progression and occurrence are unpredictable. For
these reasons, the damage states considered are limited, and the simple
damage detection analysis, i.e., image classification, was mostly carried
out.

4.3. Computer vision-based augmented reality and virtual reality

Virtual reality (VR) and augmented reality (AR) are two emerging
technologies, offering a new path to gain exciting interactive experiences
through computer-generated simulation, which considerably promote

Fig. 5. Wind turbine surface damage detection (a) surface damages/conditions; (b) implementation flowchart (Shihavuddin et al., 2019).
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the research and educational development. VR creates an immersive
virtual environment, while AR augments a real-world scene. For damage
detection applications, these technologies enable a thorough way of
inspecting the target structure and visualizing the possible damage. With
the tailored systems equipped, UAV becomes readily capable of creating
AR and VR environments by utilizing the controllable flight trajectory.
One of the systems is the LiDAR (light detection and ranging) system,
which generally consists of a laser, a scanner, and a specialized GPS
receiver. The mechanism behind the LiDAR system-equipped UAV is
described as 1) sends a light pulse towards the target surface; 2) receives
the reflected light to calculate the distance between the UAV and target
using the principle, the so-called Time of Flight principle (ToF); 3) scans
entire target following the designed UAV flight trajectory and create 3-
dimensional (3D) point cloud for constructing the interactive environ-
ment. It is worth noting that the 3D point cloud can also be directly
converted to a physical model to facilitate the inverse model updating-
based damage detection. For example, Ghahremani et al. presented a
localized approach for updating finite element models based on damage
detected in 3D point cloud. This approach can automatically identify and
quantify damage by comparing two sets of point clouds of a structural
component. The point cloud corresponding to the damage region is then
extracted and used to update a solid model of the component, followed
by finite element remeshing. This approach avoids the global surface
reconstruction and allows for mesh refinement in the localized regions of
damage without additional computational cost. Different specimens were
used to validate the feasibility of approach (Ghahremani et al., 2018).
Castellazzi et al. proposed a semi-automatic method for converting 3D
point cloud of a complex object into a 3D finite element model, as shown
in Fig. 7. In this method, the point cloud gathered from the terrestrial
laser scanner survey is conceived as a stacking of point sections (Fig. 7)
(Castellazzi et al., 2015).

While the LiDAR system-equipped UAV is very accurate in surveying,
it is expensive and usually is reserved for critical industrial applications.
It is noted that the camera-equipped UAV is much cheaper than the
LiDAR system-equipped UAV. By fully unleashing the power of computer
vision, the camera-equipped UAV can enable VR and AR technologies.
One of the prominent computer vision techniques is photogrammetry,
also known as photogrammetric computer vision, which adheres to the

same principle of the DIC photogrammetry detailed in Section 3. Note-
worthy, some AR and VR development platforms, such as Unity, ARCore,
and VR Maker by iStaging with the seamless integration of photogram-
metric computer vision have already emerged, which facilities the cre-
ation of VR and AR environments directly from the captured images.
Regarding the application of photogrammetric computer vision on UAV-
based damage detection, some studies have been found, for example, the
virtual reconstruction of a damaged archaeological site using UAV-taken
images (Carvajal-Ramírez et al., 2019) (Fig. 8), AR and UAV assisted
infrastructure inspection (Note: AR was developed based on Unity 3D)
(Wen and Kang, 2014), and a UAV and VR-based training and assessment
system for bridge inspectors (Note: VR was developed based on Unity
Road Architect) (Li et al., 2022b).

5. Main challenges and future opportunities for advancement

While UAV enabled computer vision has been increasingly applied to
the structural condition assessment over the last several years, the main
challenges remain open, which are listed as follows.

� Most of the current studies were conducted offline. In other words, the
UAV-based image acquisition and computer vision enabled damage
detection are separate and completed sequentially. Moreover, lab-
scale validation or field testing with strictly controlled testing con-
ditions is often carried out. In these cases, the uncertainties that
adversely affect damage detection reliability are negligible. Never-
theless, such uncertainties cannot be overlooked in actual practice
because the operating conditions of the UAV become unpredictable.
Under extreme weather conditions, a large degree of uncertainties
may be induced, which makes current UAV configuration and key
methodologies inadequate to ensure the desired assessment
performance.

� In addition to the abovementioned uncertainties, the dynamic
behavior of the target structure is another influential factor to the
assessment outcome. For example, the blade rotational speed of the
offshore wind turbine may be extremely high and inconstant. Current
digital imaging processing methods thus lead to degraded measure-
ment accuracy because of the difficulty in accurately subtracting the

Fig. 6. Framework of the building seismic damage detection. Reprinted with permission from (Xiong et al., 2020).

K. Zhou et al. Journal of Infrastructure Intelligence and Resilience 2 (2023) 100031

9



Table 3
Summary of the state-of-the-art deep learning methods/models used for computer vision empowered structural condition assessment.

Reference Method Description Analysis Type Application Problem Description Outcome

Yamaguchi et al. (2008) AlexNet transfer
learning

Image classification
Image classification
Image classification
Image classification

Crack detection on
concrete surfaces

Two structural
conditions, i.e., crack and
non-crack conditions
(Note: binary
classification)

Better detection
performance, i.e., both
detection accuracy and
resolution, than various edge
detection methods

Santos et al. (2022) AlexNet transfer
learning; data
augmentation

Detection of exposed
steel rebars in
concretes

Two conditions, i.e.,
exposed rebar and intact
concrete surface (Note:
binary classification)

Above 95% for all
classification criteria in
prediction

Xiong et al. (2020) VGG-16 transfer leaning Building seismic
damage detection

Several damage states of
the building; expert
judgment for damage
states labeling

89.39% prediction accuracy;
prediction of the region-
based distribution of building
damages

GopalakrishnanKasthuriranganGholmi
et al. (2018)

VGG-16 transfer leaning Crack detection of
common civil
infrastructure, such
as storage silos, local
roadways

Two structural
conditions, i.e., crack and
non-crack conditions
(Note: binary
classification)

Up to 90% prediction
accuracy in the case study

Choi et al. (2021) VGG-16 transfer
learning with divided
sections of image fed to
avoid information loss;
feature-based image
processing

Building crack
detection and
localization

Two structural
conditions, i.e., crack and
non-crack conditions
(Note: binary
classification)

Above 90% prediction
accuracy in all formulated
cases; the crack location
estimation

Samma et al. (2021) VGG-19 transfer
learning with two-layer
optimizer

Road damage
detection

Two road conditions, i.e.,
abnormal and normal
conditions (Note: binary
classification)

96.4% F1-score accuracy in
prediction; model training
optimizer with enhanced
performance

Giefer et al. (2020) Quantized neural
network implemented
on a field-programmable
gate array (FPGA)

Wind turbine blade
surface damage
detection

Two structural
conditions, i.e., defect and
non-defect conditions

Memory access reduction in
computation while
maintaining desired
classification accuracy

Zhang et al. (2022) Attention-based
MobileNetv1-YOLO-v4
with transfer learning;
image augmentation

Wind turbine blade
defect detection

Two structural
conditions, i.e., surface
spalling, pitting, crack,
and contamination

Improved detection accuracy
with significantly faster
response speed because of
less computational
complexity

Xiaoxun et al. (2022) Multivariate
Information (MI)-YOLO
model with C3TR
module and Alpha-IOU
(a loss function)

Wind turbine blade
crack detection

Two structural
conditions, i.e., defect and
non-defect conditions

Improved detection ability of
light color cracks under data
sample unbalance; the
promise of early crack
detection

Reddy et al. (2019) Customized CNN Detection of cracks
and damage in wind
turbine blades

Problem 1: two structural
conditions, i.e., faulty and
non-damage conditions
Problem 2: nine different
structural conditions

94.5% and 90.6% prediction
accuracy for the binary and
multiclass classification
analysis; a simple index web
page with user friendly
features for damage detection
analysis

Naito et al. (2020) Customized CNN Detection of
damaged buildings
after Kumamoto
earthquake

Four different building
damage levels considered

81% prediction accuracy,
which is much better than
support vector machine
model; high generalization
performance

Pan and Yang (2020) YOLO-v2 Detection of critical
damage states of
reinforced concrete
buildings

4 damage states in terms
of severity levels
considered

84.2% Mean Average
Precision (MAP) in the
prediction that has 7.5%
improvement compared to
the benchmark methods

Shihavuddin et al. (2019) Inception-ResNet-V2
architecture-based deep
learning; image
augmentation

Object detection Wind turbine blade
surface damage
detection

Four different surface
damages/conditions to be
detected/marked from
the blade image

81.1% Mean Average
Precision (MAP)

Kim et al. (2018) R–CNN–based transfer
learning; planar marker
method

Crack identification
of an aging concrete
bridge

Crack to be detected/
marked from the bridge
image (Note: only crack
and background in the
image)

Desired performance of both
crack detection and
quantification

Alzarrad et al. (2022) YOLO-v5 Roof damage
detection and
condition assessment

Damage to be detected/
marked from the roof
image (Note: only damage
and background in the
image)

81% prediction accuracy

(continued on next page)
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rigid body motion from the entire motion. Similarly, deep learning-
based direct damage detection is limited by the bad image quality
caused by fast motion. It is also worth pointing out that while the
digital image correlation (DIC) is the most robust image processing
method for vibration extraction, the deployment of the artificial
speckle patterns, such as the retroreflective markers, usually is labor
intensive.

� For damage detection, it is found that all associated studies discussed
throughout the manuscript only consider the damage types. However,
damage also can be characterized in terms of the severity level
(represented by a continuous value). Identifying both the damage
types and severity to thoroughly assess the structural condition hence
is necessary. Besides, the damage conditions occurred in the in-
service structure may be beyond the damage conditions involved in
the training dataset. It will become a more common situation, espe-
cially when the damage severity is considered. Therefore, deep
learning is expected to possess extended inference capacity.

� While significant effort has been made to advance the UAV-based
damage detection capacity, an autonomous, robust, real-time UAV-
based condition assessment system that serves practical imple-
mentations is lacking, which is due to the following difficulties: 1).
Data communication and exchange when adopting a wireless UAV
network is hardware resource demanding. Data compression and
reconstruction can reduce such dependency, which, however, in-
creases the execution time. 2). To deliver reliable damage detection
outcomes, sophisticated computer vision algorithms need to be
developed. As a result, the algorithm implementation becomes time
intensive, not to mention the large-sized image data to be handled. 3).
Uncertainties and other realistic factors mentioned above make it
challenging to develop an intelligent and unified framework to enable
the desired condition assessment robustness and reliability.

Given the above challenges, there are opportunities for advancement,
which are as follows.

� The uncertainty-induced image quality issue can be mitigated from
three aspects: 1). Continuous development and enhancement of
image preprocessing to minimize the negative effect of uncertainties
to a large extent; 2). Incorporating the new hardware components
into the UAV system, for example, adding the vibration and wind-
flow energy harvesters to convert the extra energy into electricity.
Through such UAV design, the UAV power consumption can be
reduced, and meanwhile, the UAV becomes more stable during the
flight; 3). The uncertainty-aware machine learning and optimization
are capable of elucidating the uncertainty effect (i.e., uncertainty
quantification) on decision making, thereby reducing false prediction
(Cheng et al., 2022a, 2022b; Zhou and Tang, 2021c; Zhou et al., 2022;
Liu et al., 2015).

� To fulfill the extended damage detection, the physical knowledge/
constraints should be incorporated into the deep learning to establish
the so-called physics-informed deep learning. Fundamentally, the
inherent physical correlations among different damage types benefit
the inference of unknown damage based upon the currently known
damages. Identifying the appropriate way to incorporate physical
knowledge is the key to pursuing success. However, this appears to be
a widely open solution. Considering the proposed deep learning
improvement and new feature integration, it becomes imperative to
develop a unified deep learning framework.

Table 3 (continued )

Reference Method Description Analysis Type Application Problem Description Outcome

Wu et al. (2019b) MobileNet with single
shot multi-box detector
(SSD)

Asphalt pavement
condition assessment

12 asphalt pavement
distress types to be
detected from the road
image

Good preliminary result that
lays a foundation for
autonomous and real-time
application

Ayele et al. (2020) Mask RCNN; Portable
network graphics (PNG)
masks

Image segmentation
(including both
sematic and
instance
segmentations)

Bridge crack
detection

Crack to be identified/
segmented from the
bridge image (Note: only
crack and background in
the image; pixel binary
classification)

Up to 90% prediction
accuracy; provides the crack
size measurement; a graphic
user interface (GUI) for crack
detection

Bhowmick et al. (2020) U-net combined with
boundary tracing
morphological operation

Detection of cracks
on concrete surfaces

Crack to be identified/
segmented from the
concrete surface image
(Note: only crack and
background in the image;
pixel binary
classification)

Desired detection
performance of cracks on the
concrete surface,
quantification of its
geometric properties of
cracks

Bai et al. (2020b) Mask R–CNN þ HRNet Damage detection of
the structures in
extreme events

Damage to be identified/
segmented from the
structure image (Note:
only crack and
background in the image;
pixel binary
classification)

Improved accuracy by testing
different earthquake image
data as compared to that of
benchmark methods

Fig. 7. Conversion from point cloud to 3-D finite element model for masonry
tower (Castellazzi et al., 2015).
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� Taking advantage of emerging technologies, e.g., the Internet of
Things (IoT), cloud computing, and computer vision enabled UAV,
one of the future focal points is to establish an autonomous, real-time
robust UAV-based condition assessment system. This is an interdis-
ciplinary research requiring the synergistic advancement of the UAV
system control, design, and decision-making methodologies and their
further seamless integration. The resulting outcome is expected to
bridge the gap between the research and applications.

6. Conclusion

In this article, a brief review of utilizing the unmanned aerial vehicle
(UAV)-based computer vision for structural vibration measurement and
condition assessment is provided. This is a promising and rising research
area, in which the high mobility and accessibility of the UAV can be
harnessed to advance the capacity and extend the practicability of
structural health monitoring and management. The recent development
and use of the integral components, i.e., UAV camera system configura-
tions, image processing, and deep learning enabled computer vision, are
comprehensively reviewed and discussed from different perspectives.
Despite the recent surge, the remaining challenges are also pointed out,
along with future directions for potential advancement. Due to the
interdisciplinary nature of the research, extensive effort will be made to
realize the synergistic advancement of the integral components and then
synthesize them seamlessly with emerging technologies, such as the
Internet of Things (IoT), cloud computing, collaborative UAVs, etc., for
technology evolution.
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