25,840 research outputs found

    Stakeholder involvement, motivation, responsibility, communication: How to design usable security in e-Science

    Get PDF
    e-Science projects face a difficult challenge in providing access to valuable computational resources, data and software to large communities of distributed users. Oil the one hand, the raison d'etre of the projects is to encourage members of their research communities to use the resources provided. Oil the other hand, the threats to these resources from online attacks require robust and effective Security to mitigate the risks faced. This raises two issues: ensuring that (I) the security mechanisms put in place are usable by the different users of the system, and (2) the security of the overall system satisfies the security needs of all its different stakeholders. A failure to address either of these issues call seriously jeopardise the success of e-Science projects.The aim of this paper is to firstly provide a detailed understanding of how these challenges call present themselves in practice in the development of e-Science applications. Secondly, this paper examines the steps that projects can undertake to ensure that security requirements are correctly identified, and security measures are usable by the intended research community. The research presented in this paper is based Oil four case studies of c-Science projects. Security design traditionally uses expert analysis of risks to the technology and deploys appropriate countermeasures to deal with them. However, these case studies highlight the importance of involving all stakeholders in the process of identifying security needs and designing secure and usable systems.For each case study, transcripts of the security analysis and design sessions were analysed to gain insight into the issues and factors that surround the design of usable security. The analysis concludes with a model explaining the relationships between the most important factors identified. This includes a detailed examination of the roles of responsibility, motivation and communication of stakeholders in the ongoing process of designing usable secure socio-technical systems such as e-Science. (C) 2007 Elsevier Ltd. All rights reserved

    Advanced Cloud Privacy Threat Modeling

    Full text link
    Privacy-preservation for sensitive data has become a challenging issue in cloud computing. Threat modeling as a part of requirements engineering in secure software development provides a structured approach for identifying attacks and proposing countermeasures against the exploitation of vulnerabilities in a system . This paper describes an extension of Cloud Privacy Threat Modeling (CPTM) methodology for privacy threat modeling in relation to processing sensitive data in cloud computing environments. It describes the modeling methodology that involved applying Method Engineering to specify characteristics of a cloud privacy threat modeling methodology, different steps in the proposed methodology and corresponding products. We believe that the extended methodology facilitates the application of a privacy-preserving cloud software development approach from requirements engineering to design

    Reducing risky security behaviours:utilising affective feedback to educate users

    Get PDF
    Despite the number of tools created to help end-users reduce risky security behaviours, users are still falling victim to online attacks. This paper proposes a browser extension utilising affective feedback to provide warnings on detection of risky behaviour. The paper provides an overview of behaviour considered to be risky, explaining potential threats users may face online. Existing tools developed to reduce risky security behaviours in end-users have been compared, discussing the success rate of various methodologies. Ongoing research is described which attempts to educate users regarding the risks and consequences of poor security behaviour by providing the appropriate feedback on the automatic recognition of risky behaviour. The paper concludes that a solution utilising a browser extension is a suitable method of monitoring potentially risky security behaviour. Ultimately, future work seeks to implement an affective feedback mechanism within the browser extension with the aim of improving security awareness

    Living lab approach for developing massmarket IoT products and services

    Get PDF
    Internet of Things (IoT) has emerged as a central concept in both the industrial as in the academic world. In this context, Living Lab research has been shown as an effective means for the design, implementation, development, testing and validation of Internet of Things system’s pervasiveness. However, IoT products are not yet designed based on the needs of a larger, non-technical group of end-users. Therefore, in this paper we describe the AllThingsTalk Living Lab research track in which tangible end-user products are defined to be implemented on an online IoT platform. More specifically, by using both qualitative and quantitative methodologies (i.e., desk research, online survey, probe research and co-creation) and by selecting different types of users (i.e., based on Rogers’ adoption profiles) for these interaction moments, we were able to combine the input of these users to define tangible products that meet the needs of a heterogeneous group of end-users
    • …
    corecore