27,694 research outputs found

    Human-robot collaborative assembly in cyber-physical production: Classification framework and implementation

    Get PDF
    The production industry is moving towards the next generation of assembly, which is conducted based on safe and reliable robots working in the same workplace alongside with humans. Focusing on assembly tasks, this paper presents a review of human-robot collaboration research and its classification works. Aside from defining key terms and relations, the paper also proposes means of describing human-robot collaboration that can be relied on during detailed elaboration of solutions. A human-robot collaborative assembly system is developed with a novel and comprehensive structure, and a case study is presented to validate the proposed framework. © 2017

    Towards safe human robot collaboration - Risk assessment of intelligent automation

    Get PDF
    Automation and robotics are two enablers for developing the Smart Factory of the Future, which is based on intelligent machines and collaboration between robots and humans. Especially in final assembly and its material handling, where traditional automation is challenging to use, collaborative robot (cobot) systems may increase the flexibility needed infuture production systems. A major obstacle to deploy a truly collaborative application is to design and implement a safe and efficient interaction between humans and robot systems while maintaining industrial requirements such as cost and productivity. Advanced and intelligent control strategies is the enabler when creating this safe, yet efficient, system, but is often hard to design and build.This paper highlights and discusses the challenges in meeting safety requirements according to current safety standards, starting with the mandatory risk assessment and then applying risk reduction measures, when transforming a typical manual final assembly station into an intelligent collaborative station. An important conclusion is that current safety standards and requirements must be updated and improved and the current collaborative modes defined by the standards community should be extended with a new mode, which in this paper is refereed tothedeliberative planning and acting mode

    Towards Guaranteeing Safe and Efficient Human-Robot Collaboration Using Human Intent Prediction

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/97120/1/AIAA2012-5317.pd

    Visual feedback for humans about robots' perception in collaborative environments

    Get PDF
    During the last years, major advances on artificial intelligence have successfully allowed robots to perceive their environment, which not only includes static but also dynamic objects such as humans. Indeed, robotic perception is a fundamental feature to achieve safe robots' autonomy in human-robot collaboration. However, in order to have true collaboration, both robots and humans should perceive each other’s intentions and interpret which actions they are performing. In this work, we developed a visual representation tool that illustrates the robot's perception of the space that is shared with a person. Specifically, we adapted an existent system to estimate the human pose, and we created a visualisation tool to represent the robot's perception about the human-robot closeness. We also performed a first evaluation of the system working in realistic conditions using the Tiago robot and a person as a test subject. This work is a first step towards allowing humans to have a better understanding about robots' perception in collaborative scenarios.Peer ReviewedPreprin

    Modelling uncertainties in human-robot industrial collaborations

    Get PDF
    With the rise of Industry 4.0 technological trends, there is a growing tendency in manufacturing automation towards collaborative robots. Human-robot collaboration (HRC) is motivated by the combination of complementary human and robot skills and intelligence, which can increase productivity, flexibility and adaptability. However, it is still challenging to achieve safe and efficient human-robot collaborative systems due to the dynamics of human presence, uncertainties in the dynamic environment, and the need for adaptability. Such uncertainties could relate to the human-robot capabilities and availability, parts positioning, unexpected obstacles, etc. This paper develops time-based simulations and event-based simulations to model and analyse the dynamic factors in human-robot collaboration systems. The novelty of this work is the systematic modelling and analysis of dynamic factors in HRC manufacturing scenarios through the development of digital simulations of human-robot collaboration scenarios while considering the dynamic nature of humans and environments. A real-world industrial case study was redesigned into a collaborative workstation. The simulated scenario is developed using the software called Tecnomatix Process Simulate, which can help to visualise the dynamic factors and analyse the impact of the factors on the HRC. The simulation illustrates and analyses possible uncertainties in human-robot industrial collaborative workstations, which can contribute to the future design of HRC industrial workstations and the optimisation of productivity

    An augmented reality system for safe human-robot collaboration

    Get PDF
    Closer interaction in Human-Robot Collaboration (HRC) could result in increased worker efficiency in manufacturing situations. However, physical cages often limit this. Our research is investigating the potential for using Augmented Reality (AR) to visualise virtual safety zones, thus replacing real cages. This paper presents initial experiments towards addressing the issues of how to display the safety zones and what size they should be in relation to a robot arm in order to ensure safe working practices

    Towards the Safety of Human-in-the-Loop Robotics: Challenges and Opportunities for Safety Assurance of Robotic Co-Workers

    Get PDF
    The success of the human-robot co-worker team in a flexible manufacturing environment where robots learn from demonstration heavily relies on the correct and safe operation of the robot. How this can be achieved is a challenge that requires addressing both technical as well as human-centric research questions. In this paper we discuss the state of the art in safety assurance, existing as well as emerging standards in this area, and the need for new approaches to safety assurance in the context of learning machines. We then focus on robotic learning from demonstration, the challenges these techniques pose to safety assurance and indicate opportunities to integrate safety considerations into algorithms "by design". Finally, from a human-centric perspective, we stipulate that, to achieve high levels of safety and ultimately trust, the robotic co-worker must meet the innate expectations of the humans it works with. It is our aim to stimulate a discussion focused on the safety aspects of human-in-the-loop robotics, and to foster multidisciplinary collaboration to address the research challenges identified

    Collaborative Verification-Driven Engineering of Hybrid Systems

    Full text link
    Hybrid systems with both discrete and continuous dynamics are an important model for real-world cyber-physical systems. The key challenge is to ensure their correct functioning w.r.t. safety requirements. Promising techniques to ensure safety seem to be model-driven engineering to develop hybrid systems in a well-defined and traceable manner, and formal verification to prove their correctness. Their combination forms the vision of verification-driven engineering. Often, hybrid systems are rather complex in that they require expertise from many domains (e.g., robotics, control systems, computer science, software engineering, and mechanical engineering). Moreover, despite the remarkable progress in automating formal verification of hybrid systems, the construction of proofs of complex systems often requires nontrivial human guidance, since hybrid systems verification tools solve undecidable problems. It is, thus, not uncommon for development and verification teams to consist of many players with diverse expertise. This paper introduces a verification-driven engineering toolset that extends our previous work on hybrid and arithmetic verification with tools for (i) graphical (UML) and textual modeling of hybrid systems, (ii) exchanging and comparing models and proofs, and (iii) managing verification tasks. This toolset makes it easier to tackle large-scale verification tasks
    corecore