686 research outputs found

    High-Throughput SNP Genotyping by SBE/SBH

    Full text link
    Despite much progress over the past decade, current Single Nucleotide Polymorphism (SNP) genotyping technologies still offer an insufficient degree of multiplexing when required to handle user-selected sets of SNPs. In this paper we propose a new genotyping assay architecture combining multiplexed solution-phase single-base extension (SBE) reactions with sequencing by hybridization (SBH) using universal DNA arrays such as all kk-mer arrays. In addition to PCR amplification of genomic DNA, SNP genotyping using SBE/SBH assays involves the following steps: (1) Synthesizing primers complementing the genomic sequence immediately preceding SNPs of interest; (2) Hybridizing these primers with the genomic DNA; (3) Extending each primer by a single base using polymerase enzyme and dideoxynucleotides labeled with 4 different fluorescent dyes; and finally (4) Hybridizing extended primers to a universal DNA array and determining the identity of the bases that extend each primer by hybridization pattern analysis. Our contributions include a study of multiplexing algorithms for SBE/SBH genotyping assays and preliminary experimental results showing the achievable tradeoffs between the number of array probes and primer length on one hand and the number of SNPs that can be assayed simultaneously on the other. Simulation results on datasets both randomly generated and extracted from the NCBI dbSNP database suggest that the SBE/SBH architecture provides a flexible and cost-effective alternative to genotyping assays currently used in the industry, enabling genotyping of up to hundreds of thousands of user-specified SNPs per assay.Comment: 19 page

    CAD Tools for DNA Micro-Array Design, Manufacture and Application

    Get PDF
    Motivation: As the human genome project progresses and some microbial and eukaryotic genomes are recognized, numerous biotechnological processes have attracted increasing number of biologists, bioengineers and computer scientists recently. Biotechnological processes profoundly involve production and analysis of highthroughput experimental data. Numerous sequence libraries of DNA and protein structures of a large number of micro-organisms and a variety of other databases related to biology and chemistry are available. For example, microarray technology, a novel biotechnology, promises to monitor the whole genome at once, so that researchers can study the whole genome on the global level and have a better picture of the expressions among millions of genes simultaneously. Today, it is widely used in many fields- disease diagnosis, gene classification, gene regulatory network, and drug discovery. For example, designing organism specific microarray and analysis of experimental data require combining heterogeneous computational tools that usually differ in the data format; such as, GeneMark for ORF extraction, Promide for DNA probe selection, Chip for probe placement on microarray chip, BLAST to compare sequences, MEGA for phylogenetic analysis, and ClustalX for multiple alignments. Solution: Surprisingly enough, despite huge research efforts invested in DNA array applications, very few works are devoted to computer-aided optimization of DNA array design and manufacturing. Current design practices are dominated by ad-hoc heuristics incorporated in proprietary tools with unknown suboptimality. This will soon become a bottleneck for the new generation of high-density arrays, such as the ones currently being designed at Perlegen [109]. The goal of the already accomplished research was to develop highly scalable tools, with predictable runtime and quality, for cost-effective, computer-aided design and manufacturing of DNA probe arrays. We illustrate the utility of our approach by taking a concrete example of combining the design tools of microarray technology for Harpes B virus DNA data

    CRMAGE: CRISPR Optimized MAGE Recombineering

    Get PDF
    A bottleneck in metabolic engineering and systems biology approaches is the lack of efficient genome engineering technologies. Here, we combine CRISPR/Cas9 and λ Red recombineering based MAGE technology (CRMAGE) to create a highly efficient and fast method for genome engineering of Escherichia coli. Using CRMAGE, the recombineering efficiency was between 96.5% and 99.7% for gene recoding of three genomic targets, compared to between 0.68% and 5.4% using traditional recombineering. For modulation of protein synthesis (small insertion/RBS substitution) the efficiency was increased from 6% to 70%. CRMAGE can be multiplexed and enables introduction of at least two mutations in a single round of recombineering with similar efficiencies. PAM-independent loci were targeted using degenerate codons, thereby making it possible to modify any site in the genome. CRMAGE is based on two plasmids that are assembled by a USER-cloning approach enabling quick and cost efficient gRNA replacement. CRMAGE furthermore utilizes CRISPR/Cas9 for efficient plasmid curing, thereby enabling multiple engineering rounds per day. To facilitate the design process, a web-based tool was developed to predict both the λ Red oligos and the gRNAs. The CRMAGE platform enables highly efficient and fast genome editing and may open up promising prospective for automation of genome-scale engineering

    From Molecular Blocks To Bioanalytical Assays: Combining Lanthanide Luminescence and Bioaffinity Binders for Protein Detection

    Get PDF
    Measuring protein biomarkers from sample matrix, such as plasma, is one of the basic tasks in clinical diagnostics. Bioanalytical assays used for the measuring should be able to measure proteins with high sensitivity and specificity. Furthermore, multiplexing capability would also be advantageous. To ensure the utility of the diagnostic test in point-of-care setting, additional requirements such as short turn-around times, ease-ofuse and low costs need to be met. On the other hand, enhancement of assay sensitivity could enable exploiting novel biomarkers, which are present in very low concentrations and which the current immunoassays are unable to measure. Furthermore, highly sensitive assays could enable the use of minimally invasive sampling. In the development of high-sensitivity assays the label technology and affinity binders are in pivotal role. Additionally, innovative assay designs contribute to the obtained sensitivity and other characteristics of the assay as well as its applicability. The aim of this thesis was to study the impact of assay components on the performance of both homogeneous and heterogeneous assays. Applicability of two different lanthanide-based label technologies, upconverting nanoparticles and switchable lanthanide luminescence, to protein detection was explored. Moreover, the potential of recombinant antibodies and aptamers as alternative affinity binders were evaluated. Additionally, alternative conjugation chemistries for production of the labeled binders were studied. Different assay concepts were also evaluated with respect to their applicability to point-of-care testing, which requires simple yet sensitive methods. The applicability of upconverting nanoparticles to the simultaneous quantitative measurement of multiple analytes using imaging-based detection was demonstrated. Additionally, the required instrumentation was relatively simple and inexpensive compared to other luminescent lanthanide-based labels requiring time-resolved measurement. The developed homogeneous assays exploiting switchable lanthanide luminescence were rapid and simple to perform and thus applicable even to point-ofcare testing. The sensitivities of the homogeneous assays were in the picomolar range, which are still inadequate for some analytes, such as cardiac troponins, requiring ultralow limits of detection. For most analytes, however, the obtained limits of detection were sufficient. The use of recombinant antibody fragments and aptamers as binders allowed site-specific and controlled covalent conjugation to construct labeled binders reproducibly either by using chemical modification or recombinant technology. Luminescent lanthanide labels were shown to be widely applicable for protein detection in various assay setups and to contribute assay sensitivity.Proteiinien mittaaminen biologisesta nÀytteestÀ, kuten plasmasta, on kliinisen diagnostiikan perustehtÀviÀ. KliinisessÀ diagnostiikassa kÀytettÀvien bioanalyyttisten mÀÀritysten tulisi olla herkkiÀ ja tarkkoja, jotta ne voivat mitata proteiineja nÀytteestÀ luotettavasti. LisÀksi olisi hyödyllistÀ pystyÀ mittaamaan samasta nÀytteestÀ monta analyyttiÀ yhtÀaikaisesti. Vieritestaukseen tarkoitettujen testien tulisi edellÀ mainittujen ominaisuuksien ohella olla nopeita, helppokÀyttöisiÀ ja edullisia. Toisaalta nykyistÀ merkittÀvÀsti herkempien mÀÀritysten kehittÀminen mahdollistaisi uusien, hyvin pieninÀ pitoisuuksina esiintyvien biomerkkiaineiden kÀytön diagnostiikassa. ErittÀin herkÀt mÀÀritykset voisivat myös mahdollistaa helposti saatavilla olevien nÀytemateriaalien kÀytön. MÀÀrityksen herkkyyteen ja muihin ominaisuuksiin vaikuttavia tekijöitÀ ovat kÀytetty leimateknologia sekÀ sitojamolekyylit. LisÀksi mÀÀrityskonseptin valinnalla voidaan vaikuttaa testin suorituskykyyn ja sen soveltuvuuteen esimerkiksi vieritestausolosuhteisiin. TÀssÀ vÀitöskirjatyössÀ tutkittiin kahden luminoivan lantanidileimateknologian soveltuvuutta proteiinien mittaamiseen. YhdessÀ osatyössÀ tutkittiin upkonvertoivien eli kÀÀnteisviritteisten luminoivien nanopartikkelien kÀyttökelpoisuutta monianalyyttimÀÀrityksiin ja kolmessa osatyössÀ kehitettiin nopeita erotusvapaita mÀÀrityksiÀ mallianalyyteille hyödyntÀen kytkeytyvÀÀ lantanidiluminesenssia. OsatöissÀ selvitettiin myös rekombinanttisten vasta-ainefragmenttien ja aptameerien soveltuvuutta proteiinipitoisuuksien mittaamiseen. tutkittiin erilaisia konjugointitapoja leiman ja sitojamolekyylin yhdistÀmiseksi. LisÀksi arvioitiin eri mÀÀritystapojen soveltuvuutta vieritestaussovelluksiin. VÀitöskirjatyössÀ osoitettiin, ettÀ kÀÀnteisviritteisiÀ nanopartikkeleita voidaan hyödyntÀÀ usean analyytin yhtÀaikaiseen mittaamiseen kÀyttÀmÀllÀ kuvantavaa mittaustapaa. TÀllöin voidaan kÀyttÀÀ yksinkertaisempaa laitteistoa, sillÀ toisin kuin muut luminoivat lantanidileimat, kÀÀnteisviritteiset nanopartikkelit eivÀt edellytÀ aikaerotteista mittaustapaa. Kehitetyt erotusvapaat kytkeytyvÀÀ lantanidiluminesenssia hyödyntÀvÀt mÀÀritykset olivat nopeita ja yksinkertaisia suorittaa, ja siten soveltuvia jopa vieritesteihin. Erotusvapaiden mÀÀritysten havaintorajat olivat pikomolaarisella alueella, mikÀ ei ole riittÀvÀn herkkÀ kaikille analyyteille kuten esimerkiksi sydÀnspesifisille troponiineille, joiden mittaamiseen vaaditaan erittÀin herkkiÀ testejÀ. Vasta-ainefragmenttien ja oligonukleotidipohjaisten aptameerien kÀyttö mahdollisti paikkaspesifisen ja kontrolloidun leima-sitojamolekyyli-konjugaatin muodostamisen joko kemiallisesti tai rekombinanttiteknologiaa kÀyttÀen. KÀÀnteisviritteisten luminoivien nanopartikkelien ja kytkeytyvien lantanidileimojen osoitettiin soveltuvan proteiinien detektioon monenlaisissa mÀÀrityskonsepteissa.Siirretty Doriast

    Study of Strategies for Genetic Variant Discrimination and Detection by Optosensing

    Full text link
    Tesis por compendio[ES] La medicina actual se dirige hacia un enfoque mĂĄs personalizado basĂĄndose en el diagnĂłstico molecular del paciente a travĂ©s del estudio de biomarcadores especĂ­ficos. Aplicando este principio molecular, el diagnĂłstico, pronĂłstico y selecciĂłn de la terapia se apoyan en la identificaciĂłn de variaciones especĂ­ficas del genoma humano, como variaciones de un Ășnico nucleĂłtido (SNV). Para detectar estos biomarcadores se dispone de una amplia oferta de tecnologĂ­as. Sin embargo, muchos de los mĂ©todos en uso presentan limitaciones como un elevado coste, complejidad, tiempos de anĂĄlisis largos o requieren de personal y equipamiento especializado, lo que imposibilita su incorporaciĂłn masiva en la mayorĂ­a de los sistemas sanitarios. Por tanto, existe la necesidad de investigar y desarrollar soluciones analĂ­ticas que aporten informaciĂłn sobre las variantes genĂ©ticas y que se puedan implementar en diferentes escenarios del ĂĄmbito de la salud con prestaciones competitivas y econĂłmicamente viables. El objetivo principal de esta tesis ha sido desarrollar estrategias innovadoras para resolver el reto de la detecciĂłn mĂșltiple de variantes genĂ©ticas que se encuentran en forma minoritaria en muestras biolĂłgicas de pacientes, cubriendo las demandas asociadas al entorno clĂ­nico. Las tareas de investigaciĂłn se centraron en la combinaciĂłn de reacciones de discriminaciĂłn alĂ©lica con amplificaciĂłn selectiva de DNA y el desarrollo de sistemas Ăłpticos de detecciĂłn versĂĄtiles. Con el fin de atender el amplio abanico de necesidades, en el primer capĂ­tulo, se presentan resultados que mejoran las prestaciones analĂ­ticas de la reacciĂłn en cadena de la polimerasa (PCR) mediante la incorporaciĂłn de una etapa al termociclado y de un agente bloqueante amplificando selectivamente las variantes minoritarias que fueron monitorizadas mediante fluorescencia a tiempo real. En el segundo capĂ­tulo, se logrĂł la discriminaciĂłn alĂ©lica combinando la ligaciĂłn de oligonucleĂłtidos con la amplificaciĂłn de la recombinasa polimerasa (RPA), que al operar a temperatura constante permitiĂł una detecciĂłn tipo point-of-care (POC). La identificaciĂłn de SNV se llevĂł a cabo mediante hibridaciĂłn en formato micromatriz, utilizando la tecnologĂ­a Blu-Ray como plataforma de ensayo y detecciĂłn. En el tercer capĂ­tulo, se integrĂł la RPA con la reacciĂłn de hibridaciĂłn alelo especifica en cadena (AS-HCR), en formato array para genotipar SNV a partir de DNA genĂłmico en un chip. La lectura de los resultados se realizĂł mediante un smartphone. En el Ășltimo capĂ­tulo, se presenta la sĂ­ntesis de un nuevo reactivo bioluminiscente que se aplicĂł a la monitorizaciĂłn de biomarcadores de DNA a tiempo real y final de la RPA basada en la transferencia de energĂ­a de resonancia de bioluminiscencia (BRET), eliminando la necesidad de una fuente de excitaciĂłn. Todas las estrategias permitieron un reconocimiento especifico de la variante de interĂ©s, incluso en muestras que contenĂ­an tan solo 20 copias de DNA genĂłmico diana. Se consiguieron resultados sensibles (lĂ­mite de detecciĂłn 0.5% variante/total), reproducibles (desviaciĂłn estĂĄndar relativa < 19%), de manera sencilla (3 etapas o menos), rĂĄpida (tiempos cortos de 30-200 min) y permitiendo el anĂĄlisis simultaneo de varios genes. Como prueba de concepto, estas estrategias se aplicaron a la detecciĂłn e identificaciĂłn en muestras clĂ­nicas de biomarcadores asociados a cĂĄncer colorrectal y enfermedades cardiolĂłgicas. Los resultados se validaron por comparaciĂłn con los mĂ©todos de referencia NGS y PCR, comprobĂĄndose que se mejoraban los requerimientos tĂ©cnicos y la relaciĂłn coste-eficacia. En conclusiĂłn, las investigaciones llevadas a cabo posibilitaron desarrollar herramientas de genotipado con propiedades analĂ­ticas competitivas y versĂĄtiles, aplicables a diferentes escenarios sanitarios, desde hospitales a entornos con pocos recursos. Estos resultados son prometedores al dar respuesta a la demanda de tecnologĂ­as alternativas para el diagnĂłstico molecular personalizado.[CA] La medicina actual es dirigeix cap a un enfocament mĂ©s personalitzat basant-se en el diagnĂČstic molecular del pacient a travĂ©s de l'estudi de biomarcadors especĂ­fics. Aplicant aquest principi molecular, el diagnĂČstic, pronĂČstic i selecciĂł de la terĂ pia es recolzen en la identificaciĂł de variacions especĂ­fiques del genoma humĂ , com variacions d'un Ășnic nucleĂČtid (SNV). Per a detectar aquests biomarcadors, es disposa d'una Ă mplia oferta de tecnologies. No obstant aixĂČ, molts dels mĂštodes en Ășs presenten limitacions com un elevat cost, complexitat, temps d'anĂ lisis llargues o requereixen de personal i equipament especialitzat, la qual cosa impossibilita la seua incorporaciĂł massiva en la majoria dels sistemes sanitaris. Per tant, existeix la necessitat d'investigar i desenvolupar solucions analĂ­tiques que aporten informaciĂł sobre les variants genĂštiques i que es puguen implementar en diferents escenaris de l'Ă mbit de la salut amb prestacions competitives i econĂČmicament viables. L'objectiu principal d'aquesta tesi ha sigut desenvolupar estratĂšgies innovadores per a resoldre el repte de la detecciĂł mĂșltiple de variants genĂštiques que es troben en forma minoritĂ ria en mostres biolĂČgiques de pacients, cobrint les demandes associades a l'entorn clĂ­nic. Les tasques d'investigaciĂł es van centrar en la combinaciĂł de reaccions de discriminaciĂł al·lĂšlica amb amplificaciĂł selectiva de DNA i al desenvolupament de sistemes ĂČptics de detecciĂł versĂ tils. Amb la finalitat d'atendre l'ampli ventall de necessitats, en el primer capĂ­tol, es presenten resultats que milloren les prestacions analĂ­tiques de la reacciĂł en cadena de la polimerasa (PCR) mitjançant la incorporaciĂł d'una etapa al termociclat i d'un agent bloquejant amplificant selectivament les variants minoritĂ ries que van ser monitoritzades mitjançant fluorescĂšncia a temps real. En el segon capĂ­tol, es va aconseguir la discriminaciĂł al·lĂšlica combinant el lligament d'oligonucleĂČtids amb l'amplificaciĂł de la recombinasa polimerasa (RPA), que en operar a temperatura constant va permetre una detecciĂł tipus point-of-care (POC). La identificaciĂł de SNV es va dur a terme mitjançant hibridaciĂł en format micromatriu, utilitzant la tecnologia Blu-Ray com a plataforma d'assaig i detecciĂł. En el tercer capĂ­tol, es va integrar la RPA amb la reacciĂł d'hibridaciĂł al·lel especĂ­fica en cadena (AS-HCR), en format matriu per a genotipar SNV a partir de DNA genĂČmic en un xip. La lectura dels resultats es va realitzar mitjançant un telĂšfon intel·ligent. En l'Ășltim capĂ­tol, es presenta la sĂ­ntesi d'un nou reactiu bioluminescent que es va aplicar al monitoratge de biomarcadors de DNA a temps real i final de la RPA basada en la transferĂšncia d'energia de ressonĂ ncia de bioluminescĂšncia (BRET), eliminant la necessitat d'una font d'excitaciĂł. Totes les estratĂšgies van permetre un reconeixement especĂ­fic de la variant d'interĂšs, fins i tot en mostres que nomĂ©s contenien 20 cĂČpies de DNA genĂČmic diana. Es van aconseguir resultats sensibles (lĂ­mit de detecciĂł 0.5% variant/total), reproduĂŻbles (desviaciĂł estĂ ndard relativa < 19%), de manera senzilla (3 etapes o menys), rĂ pida (temps curts de 30-200 min) i permetent l'anĂ lisi simultĂ nia de diversos gens. Com a prova de concepte, aquestes estratĂšgies es van aplicar a la detecciĂł i identificaciĂł en mostres clĂ­niques de biomarcadors associats a cĂ ncer colorectal i a malalties cardiolĂČgiques. Els resultats es van validar per comparaciĂł amb els mĂštodes de referĂšncia NGS i PCR, comprovant-se que es milloraven els requeriments tĂšcnics i la relaciĂł cost-eficĂ cia. En conclusiĂł, les investigacions dutes a terme van possibilitar desenvolupar eines de genotipat amb propietats analĂ­tiques competitives i versĂ tils, aplicables a diferents escenaris sanitaris, des d'hospitals a entorns amb pocs recursos. Aquests resultats sĂłn prometedors en donar resposta a la demanda de tecnologies alternatives per al diagnĂČstic molecular personalitzat.[EN] Current medicine is moving towards a more personalized approach based on the patients' molecular diagnosis through the study of specific biomarkers. Diagnosis, prognosis and therapy selection, applying this molecular principle, rely on identifying specific variations in the human genome, such as single nucleotide variations (SNV). A wide range of technologies is available to detect these biomarkers. However, many of the employed methods have limitations such as high cost, complexity, long analysis times, or requiring specialized personnel and equipment, making their massive incorporation in most healthcare systems impossible. Therefore, there is a need to research and develop analytical solutions that provide information on genetic variants that can be implemented in different health scenarios with competitive and economically feasible performances. The main objective of this thesis has been to develop innovative strategies to solve the challenge of multiple detection of genetic variants that are found in a minority amount in patient samples, covering the demands associated with the clinical setting. Research tasks focused on the combination of allelic discrimination reactions with selective DNA amplification and the development of versatile optical detection systems. In order to meet the wide range of needs, in the first chapter, the analytical performances of the polymerase chain reaction (PCR) were improved by incorporating a thermocycling step and a blocking agent to amplify selectively minority variants that were monitored by real-time fluorescence. In the second chapter, allelic discrimination was achieved by combining oligonucleotide ligation with recombinase polymerase amplification (RPA), which operates at a constant temperature, allowing point-of-care (POC) detection. SNV identification was carried out by hybridization in microarray format, using Blu-Ray technology as the assay platform and detector. RPA was integrated with allele-specific hybridization chain reaction (AS-HCR), in an array format to genotype SNV from genomic DNA on a chip in the third chapter. The reading of the results was performed using a smartphone. In the last chapter, a new bioluminescent reagent was synthesized. It was applied to real-time and endpoint DNA biomarker monitoring based on bioluminescence resonance energy transfer (BRET), eliminating the need for an excitation source. All the strategies allowed specific recognition of the target variant, even in samples containing as few as 20 copies of target genomic DNA. Sensitive (limit of detection 0.5% variant/total), reproducible (relative standard deviation < 19%), simple (3 steps or less), fast (short times of 30-200 min) results were achieved, allowing simultaneous analysis of several genes. As proof of concept, these strategies were applied to detect and identify biomarkers associated with colorectal cancer and cardiological diseases in clinical samples. The results were validated by comparison with reference methods such as NGS and PCR, proving that the technical requirements and cost-effectiveness were improved. In conclusion, the developed research made it possible to develop genotyping tools with competitive analytical properties and versatile, applicable to different healthcare scenarios, from hospitals to limited-resource environments. These results are promising since they respond to the demand for alternative technologies for personalized molecular diagnostics.The authors acknowledge the financial support received from the Generalitat Valenciana PROMETEO/2020/094, GRISOLIA/2014/024 PhD Grant and GVA-FPI-2017 PhD grant, the Spanish Ministry of Economy and Competitiveness MINECO projects CTQ2016-75749-R and PID2019-110713RB-I00 and European Regional Development Fund (ERDF).LĂĄzaro ZaragozĂĄ, A. (2022). Study of Strategies for Genetic Variant Discrimination and Detection by Optosensing [Tesis doctoral]. Universitat PolitĂšcnica de ValĂšncia. https://doi.org/10.4995/Thesis/10251/185216TESISCompendi

    Optimization of a microarray-based biosensor for detection of viral pathogens

    Full text link
    Rapid and sensitive detection of viral infections is of significant importance for improving patient care and containing outbreaks that threaten public health. Although there has been an enormous effort to develop point-of-care biosensors for viral diagnostics applications, sensitive, robust and easily portable platforms have yet to be realized. This dissertation focuses on optimization of a multiplexed immunoassay platform for viral diagnostics applications using a label-free optical biosensor termed Single-Particle Interferometric Reflectance Imaging Sensor (SP-IRIS). SP-IRIS utilizes an antibody microarray that captures the target viruses and an optical instrument that allows visualization of individual captured virus particles. Since this platform relies on capture of whole viruses, it is crucial to identify high-affinity antibodies that are capable of recognizing intact virions. For this purpose, we screened various antibodies for their performance on the SP-IRIS platform. By screening 43 different antibodies for three different viruses, we demonstrated specific and sensitive detection of different viruses and different subtypes of the same virus. This work allowed us to assemble an antibody microarray capable of multiplexed detection that has been tested in our laboratory as well as at two separate high-containment facilities. Next, we adapted a different antibody immobilization technique, DNA-directed antibody immobilization (DDI), to the SP-IRIS platform as a means to improve the sensitivity and robustness of the assay. First, we characterized the elevation of the antibodies conjugated to a DNA sequence on a three-dimensional polymeric surface using a fluorescence axial localization technique, Spectral Self-Interference Fluorescence Microscopy, determining the optimal length of the DNA linkers for SP-IRIS substrates. We subsequently showed the specific detection of Vesicular Stomatitis Virus (VSV) expressing Ebola glycoprotein on SP-IRIS platform using the DDI approach. We showed that DNA-conjugated antibodies improve the capture efficiency resulting in over a ten-fold improvement in assay sensitivity compared to directly immobilized antibodies. To demonstrate the feasibility of the DDI technique for multiplexed virus detection utilizing SP-IRIS, we used VSVs expressing Ebola, Marburg or Lassa surface glycoproteins and successfully demonstrated specific and multiplexed detection using a DNA microarray surface. We also combined this approach with a passive microfluidic cartridge, demonstrating the feasibility of SP-IRIS as a rapid testing technique that is well suited for point-of-care applications

    Multiplexed and Reiterative Detection of Protein Markers in Cells using Dynamic Nucleic Acid Complexes

    Get PDF
    The diagnosis, staging and clinical management of cancer and other diseases is becoming increasingly reliant upon the identification and quantification of molecular markers as well their spatial distribution in histological samples. Yet, due to spectral overlap of dyes and the inability to remove probes without affecting marker integrity, immunohistological methods are limited by the number of markers that can be examined on a single specimen resulting in loss of information that could be vital to diagnosis or treatment. This dissertation describes the development and characterization of an erasable multi-color imaging technology capable of detecting large numbers of molecular markers on a single biological sample. The system consists of (1) 'targets', which are single or partially hybridized DNA strands conjugated to a protein of interest for biomarker recognition in cells, and (2) multi-strand, fluorophore-containing DNA 'probe complexes' that react with the DNA portion of the target in a sequence dependent fashion to create fluorescent reporting complexes. The addition of a quencher-bearing ssDNA displaces the target's DNA strand to effectively remove the dye from the marker so that the sample can be re-imaged for other markers with minimal interference from prior iii rounds of labeling. Orthogonal DNA sequences and spectrally-separated dyes can be used to create multiple, unique target/probe pairs that associate specifically and can be imaged in parallel. The overall utility of this technology depends on high specificity of targets to respective probe complexes, highly efficient labeling and erasing to ensure that fluorescent signals can be used to fully quantify target abundance without the interference of signals from previous rounds of labeling, and short reaction times to allow for multiple rounds of processing on the same sample without loss of integrity. Based on the above criteria, three classes of probes were designed and their structure-function relationships elucidated to determine the contributions of complex size, free energy differences between intermediate states, and strand displacement on labeling and erasing kinetics and efficiencies on cells. A comparison of the kinetics of the labeling and erasing reactions for the three different constructs showed that reaction efficiencies depend less on calculated net free energy change than on the engineered state of the complex during the strand displacement reaction (i.e., the type of strand displacement reaction it participates in). This new paradigm in probe design allowed the system to meet its design goals, potentially increasing the diagnostic power of individual histological specimens and opening the door to more sophisticated analyses of cell phenotype and its functional relationship to disease

    Next-generation sequencing technologies and applications for human genetic history and forensics

    Get PDF
    Rapid advances in the development of sequencing technologies in recent years have enabled an increasing number of applications in biology and medicine. Here, we review key technical aspects of the preparation of DNA templates for sequencing, the biochemical reaction principles and assay formats underlying next-generation sequencing systems, methods for imaging and base calling, quality control, and bioinformatic approaches for sequence alignment, variant calling and assembly. We also discuss some of the most important advances that the new sequencing technologies have brought to the fields of human population genetics, human genetic history and forensic genetics

    Fluorescence-based super-resolution-microscopy strategies for chromatin studies

    Get PDF
    Super-resolution microscopy (SRM) is a prime tool to study chromatin organisation at near biomolecular resolution in the native cellular environment. With fluorescent labels DNA, chromatin-associated proteins and specific epigenetic states can be identified with high molecular specificity. The aim of this review is to introduce the field of diffraction-unlimited SRM to enable an informed selection of the most suitable SRM method for a specific chromatin-related research question. We will explain both diffraction-unlimited approaches (coordinate-targeted and stochastic-localisation-based) and list their characteristic spatio-temporal resolutions, live-cell compatibility, image-processing, and ability for multi-colour imaging. As the increase in resolution, compared to, e.g. confocal microscopy, leads to a central role of the sample quality, important considerations for sample preparation and concrete examples of labelling strategies applicable to chromatin research are discussed. To illustrate how SRM-based methods can significantly improve our understanding of chromatin functioning, and to serve as an inspiring starting point for future work, we conclude with examples of recent applications of SRM in chromatin research.</p

    Using metabarcoding to reveal and quantify plant-pollinator interactions.

    Get PDF
    12 pagesInternational audienceGiven the ongoing decline of both pollinators and plants, it is crucial to implement effective methods to describe complex pollination networks across time and space in a comprehensive and high-throughput way. Here we tested if metabarcoding may circumvent the limits of conventional methodologies in detecting and quantifying plant-pollinator interactions. Metabarcoding experiments on pollen DNA mixtures described a positive relationship between the amounts of DNA from focal species and the number of trnL and ITS1 sequences yielded. The study of pollen loads of insects captured in plant communities revealed that as compared to the observation of visits, metabarcoding revealed 2.5 times more plant species involved in plant-pollinator interactions. We further observed a tight positive relationship between the pollen-carrying capacities of insect taxa and the number of trnL and ITS1 sequences. The number of visits received per plant species also positively correlated to the number of their ITS1 and trnL sequences in insect pollen loads. By revealing interactions hard to observe otherwise, metabarcoding significantly enlarges the spatiotemporal observation window of pollination interactions. By providing new qualitative and quantitative information, metabarcoding holds great promise for investigating diverse facets of interactions and will provide a new perception of pollination networks as a whole
    • 

    corecore