3 research outputs found

    Towards more precise, minimally-invasive tumour treatment under free breathing

    No full text
    In recent years, significant advances have been made towards compensating respiratory organ motion for the treatment of tumours, e.g. for the liver. Among the most promising approaches are statistical population models of organ motion. In this paper we give an overview on our work in the field. We explain how 4D motion data can be acquired, how these motion models can then be built and applied in realistic scenarios. The application of the motion models is first shown on a case where 3D surrogate marker data is available. Then we will evaluate the prediction accuracy if only 2D and lastly 1D surrogate marker motion data is available. For all three scenarios we will give quantitative prediction accuracy results

    Respiratory organ motion in interventional MRI : tracking, guiding and modeling

    Get PDF
    Respiratory organ motion is one of the major challenges in interventional MRI, particularly in interventions with therapeutic ultrasound in the abdominal region. High-intensity focused ultrasound found an application in interventional MRI for noninvasive treatments of different abnormalities. In order to guide surgical and treatment interventions, organ motion imaging and modeling is commonly required before a treatment start. Accurate tracking of organ motion during various interventional MRI procedures is prerequisite for a successful outcome and safe therapy. In this thesis, an attempt has been made to develop approaches using focused ultrasound which could be used in future clinically for the treatment of abdominal organs, such as the liver and the kidney. Two distinct methods have been presented with its ex vivo and in vivo treatment results. In the first method, an MR-based pencil-beam navigator has been used to track organ motion and provide the motion information for acoustic focal point steering, while in the second approach a hybrid imaging using both ultrasound and magnetic resonance imaging was combined for advanced guiding capabilities. Organ motion modeling and four-dimensional imaging of organ motion is increasingly required before the surgical interventions. However, due to the current safety limitations and hardware restrictions, the MR acquisition of a time-resolved sequence of volumetric images is not possible with high temporal and spatial resolution. A novel multislice acquisition scheme that is based on a two-dimensional navigator, instead of a commonly used pencil-beam navigator, was devised to acquire the data slices and the corresponding navigator simultaneously using a CAIPIRINHA parallel imaging method. The acquisition duration for four-dimensional dataset sampling is reduced compared to the existing approaches, while the image contrast and quality are improved as well. Tracking respiratory organ motion is required in interventional procedures and during MR imaging of moving organs. An MR-based navigator is commonly used, however, it is usually associated with image artifacts, such as signal voids. Spectrally selective navigators can come in handy in cases where the imaging organ is surrounding with an adipose tissue, because it can provide an indirect measure of organ motion. A novel spectrally selective navigator based on a crossed-pair navigator has been developed. Experiments show the advantages of the application of this novel navigator for the volumetric imaging of the liver in vivo, where this navigator was used to gate the gradient-recalled echo sequence

    Respiratory-induced organ motion compensation for MRgHIFU

    Get PDF
    Summary: High Intensity Focused Ultrasound is an emerging non-invasive technology for the precise thermal ablation of pathological tissue deep within the body. The fitful, respiratoryinduced motion of abdominal organs, such as of the liver, renders targeting challenging. The work in hand describes methods for imaging, modelling and managing respiratoryinduced organ motion. The main objective is to enable 3D motion prediction of liver tumours for the treatment with Magnetic Resonance guided High Intensity Focused Ultrasound (MRgHIFU). To model and predict respiratory motion, the liver motion is initially observed in 3D space. Fast acquired 2D magnetic resonance images are retrospectively reconstructed to time-resolved volumes, thus called 4DMRI (3D + time). From these volumes, dense deformation fields describing the motion from time-step to time-step are extracted using an intensity-based non-rigid registration algorithm. 4DMRI sequences of 20 subjects, providing long-term recordings of the variability in liver motion under free breathing, serve as the basis for this study. Based on the obtained motion data, three main types of models were investigated and evaluated in clinically relevant scenarios. In particular, subject-specific motion models, inter-subject population-based motion models and the combination of both are compared in comprehensive studies. The analysis of the prediction experiments showed that statistical models based on Principal Component Analysis are well suited to describe the motion of a single subject as well as of a population of different and unobserved subjects. In order to enable target prediction, the respiratory state of the respective organ was tracked in near-real-time and a temporal prediction of its future position is estimated. The time span provided by the prediction is used to calculate the new target position and to readjust the treatment focus. In addition, novel methods for faster acquisition of subject-specific 3D data based on a manifold learner are presented and compared to the state-of-the art 4DMRI method. The developed methods provide motion compensation techniques for the non-invasive and radiation-free treatment of pathological tissue in moving abdominal organs for MRgHIFU. ---------- Zusammenfassung: High Intensity Focused Ultrasound ist eine aufkommende, nicht-invasive Technologie für die präzise thermische Zerstörung von pathologischem Gewebe im Körper. Die unregelmässige ateminduzierte Bewegung der Unterleibsorgane, wie z.B. im Fall der Leber, macht genaues Zielen anspruchsvoll. Die vorliegende Arbeit beschreibt Verfahren zur Bildgebung, Modellierung und zur Regelung ateminduzierter Organbewegung. Das Hauptziel besteht darin, 3D Zielvorhersagen für die Behandlung von Lebertumoren mittels Magnetic Resonance guided High Intensity Focused Ultrasound (MRgHIFU) zu ermöglichen. Um die Atembewegung modellieren und vorhersagen zu können, wird die Bewegung der Leber zuerst im dreidimensionalen Raum beobachtet. Schnell aufgenommene 2DMagnetresonanz- Bilder wurden dabei rückwirkend zu Volumen mit sowohl guter zeitlicher als auch räumlicher Auflösung, daher 4DMRI (3D + Zeit) genannt, rekonstruiert. Aus diesen Volumen werden Deformationsfelder, welche die Bewegung von Zeitschritt zu Zeitschritt beschreiben, mit einem intensitätsbasierten, nicht-starren Registrierungsalgorithmus extrahiert. 4DMRI-Sequenzen von 20 Probanden, welche Langzeitaufzeichungen von der Variabilität der Leberbewegung beinhalten, dienen als Grundlage für diese Studie. Basierend auf den gewonnenen Bewegungsdaten wurden drei Arten von Modellen in klinisch relevanten Szenarien untersucht und evaluiert. Personen-spezifische Bewegungsmodelle, populationsbasierende Bewegungsmodelle und die Kombination beider wurden in umfassenden Studien verglichen. Die Analyse der Vorhersage-Experimente zeigte, dass statistische Modelle basierend auf Hauptkomponentenanalyse gut geeignet sind, um die Bewegung einer einzelnen Person sowie einer Population von unterschiedlichen und unbeobachteten Personen zu beschreiben. Die Bewegungsvorhersage basiert auf der Abschätzung der Organposition, welche fast in Echtzeit verfolgt wird. Die durch die Vorhersage bereitgestellte Zeitspanne wird verwendet, um die neue Zielposition zu berechnen und den Behandlungsfokus auszurichten. Darüber hinaus werden neue Methoden zur schnelleren Erfassung patienten-spezifischer 3D-Daten und deren Rekonstruktion vorgestellt und mit der gängigen 4DMRI-Methode verglichen. Die entwickelten Methoden beschreiben Techniken zur nichtinvasiven und strahlungsfreien Behandlung von krankhaftem Gewebe in bewegten Unterleibsorganen mittels MRgHIFU
    corecore