thesis

Respiratory-induced organ motion compensation for MRgHIFU

Abstract

Summary: High Intensity Focused Ultrasound is an emerging non-invasive technology for the precise thermal ablation of pathological tissue deep within the body. The fitful, respiratoryinduced motion of abdominal organs, such as of the liver, renders targeting challenging. The work in hand describes methods for imaging, modelling and managing respiratoryinduced organ motion. The main objective is to enable 3D motion prediction of liver tumours for the treatment with Magnetic Resonance guided High Intensity Focused Ultrasound (MRgHIFU). To model and predict respiratory motion, the liver motion is initially observed in 3D space. Fast acquired 2D magnetic resonance images are retrospectively reconstructed to time-resolved volumes, thus called 4DMRI (3D + time). From these volumes, dense deformation fields describing the motion from time-step to time-step are extracted using an intensity-based non-rigid registration algorithm. 4DMRI sequences of 20 subjects, providing long-term recordings of the variability in liver motion under free breathing, serve as the basis for this study. Based on the obtained motion data, three main types of models were investigated and evaluated in clinically relevant scenarios. In particular, subject-specific motion models, inter-subject population-based motion models and the combination of both are compared in comprehensive studies. The analysis of the prediction experiments showed that statistical models based on Principal Component Analysis are well suited to describe the motion of a single subject as well as of a population of different and unobserved subjects. In order to enable target prediction, the respiratory state of the respective organ was tracked in near-real-time and a temporal prediction of its future position is estimated. The time span provided by the prediction is used to calculate the new target position and to readjust the treatment focus. In addition, novel methods for faster acquisition of subject-specific 3D data based on a manifold learner are presented and compared to the state-of-the art 4DMRI method. The developed methods provide motion compensation techniques for the non-invasive and radiation-free treatment of pathological tissue in moving abdominal organs for MRgHIFU. ---------- Zusammenfassung: High Intensity Focused Ultrasound ist eine aufkommende, nicht-invasive Technologie für die präzise thermische Zerstörung von pathologischem Gewebe im Körper. Die unregelmässige ateminduzierte Bewegung der Unterleibsorgane, wie z.B. im Fall der Leber, macht genaues Zielen anspruchsvoll. Die vorliegende Arbeit beschreibt Verfahren zur Bildgebung, Modellierung und zur Regelung ateminduzierter Organbewegung. Das Hauptziel besteht darin, 3D Zielvorhersagen für die Behandlung von Lebertumoren mittels Magnetic Resonance guided High Intensity Focused Ultrasound (MRgHIFU) zu ermöglichen. Um die Atembewegung modellieren und vorhersagen zu können, wird die Bewegung der Leber zuerst im dreidimensionalen Raum beobachtet. Schnell aufgenommene 2DMagnetresonanz- Bilder wurden dabei rückwirkend zu Volumen mit sowohl guter zeitlicher als auch räumlicher Auflösung, daher 4DMRI (3D + Zeit) genannt, rekonstruiert. Aus diesen Volumen werden Deformationsfelder, welche die Bewegung von Zeitschritt zu Zeitschritt beschreiben, mit einem intensitätsbasierten, nicht-starren Registrierungsalgorithmus extrahiert. 4DMRI-Sequenzen von 20 Probanden, welche Langzeitaufzeichungen von der Variabilität der Leberbewegung beinhalten, dienen als Grundlage für diese Studie. Basierend auf den gewonnenen Bewegungsdaten wurden drei Arten von Modellen in klinisch relevanten Szenarien untersucht und evaluiert. Personen-spezifische Bewegungsmodelle, populationsbasierende Bewegungsmodelle und die Kombination beider wurden in umfassenden Studien verglichen. Die Analyse der Vorhersage-Experimente zeigte, dass statistische Modelle basierend auf Hauptkomponentenanalyse gut geeignet sind, um die Bewegung einer einzelnen Person sowie einer Population von unterschiedlichen und unbeobachteten Personen zu beschreiben. Die Bewegungsvorhersage basiert auf der Abschätzung der Organposition, welche fast in Echtzeit verfolgt wird. Die durch die Vorhersage bereitgestellte Zeitspanne wird verwendet, um die neue Zielposition zu berechnen und den Behandlungsfokus auszurichten. Darüber hinaus werden neue Methoden zur schnelleren Erfassung patienten-spezifischer 3D-Daten und deren Rekonstruktion vorgestellt und mit der gängigen 4DMRI-Methode verglichen. Die entwickelten Methoden beschreiben Techniken zur nichtinvasiven und strahlungsfreien Behandlung von krankhaftem Gewebe in bewegten Unterleibsorganen mittels MRgHIFU

    Similar works