9,692 research outputs found

    Cloud provider capacity augmentation through automated resource bartering

    Get PDF
    © 2017 Elsevier B.V. Growing interest in Cloud Computing places a heavy workload on cloud providers which is becoming increasingly difficult for them to manage with their primary data centre infrastructures. Resource scarcity can make providers vulnerable to significant reputational damage and it often forces customers to select services from the larger, more established companies, sometimes at a higher price. Funding limitations, however, commonly prevent emerging and even established providers from making a continual investment in hardware speculatively assuming a certain level of growth in demand. As an alternative, they may opt to use the current inter-cloud resource sharing systems which mainly rely on monetary payments and thus put pressure on already stretched cash flows. To address such issues, a new multi-agent based Cloud Resource Bartering System (CRBS) is implemented in this work that fosters the management and bartering of pooled resources without requiring costly financial transactions between IAAS cloud providers. Agents in CRBS collaborate to facilitate bartering among providers which not only strengthens their trading relationships but also enables them to handle surges in demand with their primary setup. Unlike existing systems, CRBS assigns resources by considering resource urgency which comparatively improves customers’ satisfaction and the resource utilization rate by more than 50%. The evaluation results verify that our system assists providers to timely acquire the additional resources and to maintain sustainable service delivery. We conclude that the existence of such a system is economically beneficial for cloud providers and enables them to adapt to fluctuating workloads

    Integration of Blockchain and Auction Models: A Survey, Some Applications, and Challenges

    Get PDF
    In recent years, blockchain has gained widespread attention as an emerging technology for decentralization, transparency, and immutability in advancing online activities over public networks. As an essential market process, auctions have been well studied and applied in many business fields due to their efficiency and contributions to fair trade. Complementary features between blockchain and auction models trigger a great potential for research and innovation. On the one hand, the decentralized nature of blockchain can provide a trustworthy, secure, and cost-effective mechanism to manage the auction process; on the other hand, auction models can be utilized to design incentive and consensus protocols in blockchain architectures. These opportunities have attracted enormous research and innovation activities in both academia and industry; however, there is a lack of an in-depth review of existing solutions and achievements. In this paper, we conduct a comprehensive state-of-the-art survey of these two research topics. We review the existing solutions for integrating blockchain and auction models, with some application-oriented taxonomies generated. Additionally, we highlight some open research challenges and future directions towards integrated blockchain-auction models

    NOMA based resource allocation and mobility enhancement framework for IoT in next generation cellular networks

    Get PDF
    With the unprecedented technological advances witnessed in the last two decades, more devices are connected to the internet, forming what is called internet of things (IoT). IoT devices with heterogeneous characteristics and quality of experience (QoE) requirements may engage in dynamic spectrum market due to scarcity of radio resources. We propose a framework to efficiently quantify and supply radio resources to the IoT devices by developing intelligent systems. The primary goal of the paper is to study the characteristics of the next generation of cellular networks with non-orthogonal multiple access (NOMA) to enable connectivity to clustered IoT devices. First, we demonstrate how the distribution and QoE requirements of IoT devices impact the required number of radio resources in real time. Second, we prove that using an extended auction algorithm by implementing a series of complementary functions, enhance the radio resource utilization efficiency. The results show substantial reduction in the number of sub-carriers required when compared to conventional orthogonal multiple access (OMA) and the intelligent clustering is scalable and adaptable to the cellular environment. Ability to move spectrum usages from one cluster to other clusters after borrowing when a cluster has less user or move out of the boundary is another soft feature that contributes to the reported radio resource utilization efficiency. Moreover, the proposed framework provides IoT service providers cost estimation to control their spectrum acquisition to achieve required quality of service (QoS) with guaranteed bit rate (GBR) and non-guaranteed bit rate (Non-GBR)
    corecore