7,186 research outputs found

    In-Network View Synthesis for Interactive Multiview Video Systems

    Get PDF
    To enable Interactive multiview video systems with a minimum view-switching delay, multiple camera views are sent to the users, which are used as reference images to synthesize additional virtual views via depth-image-based rendering. In practice, bandwidth constraints may however restrict the number of reference views sent to clients per time unit, which may in turn limit the quality of the synthesized viewpoints. We argue that the reference view selection should ideally be performed close to the users, and we study the problem of in-network reference view synthesis such that the navigation quality is maximized at the clients. We consider a distributed cloud network architecture where data stored in a main cloud is delivered to end users with the help of cloudlets, i.e., resource-rich proxies close to the users. In order to satisfy last-hop bandwidth constraints from the cloudlet to the users, a cloudlet re-samples viewpoints of the 3D scene into a discrete set of views (combination of received camera views and virtual views synthesized) to be used as reference for the synthesis of additional virtual views at the client. This in-network synthesis leads to better viewpoint sampling given a bandwidth constraint compared to simple selection of camera views, but it may however carry a distortion penalty in the cloudlet-synthesized reference views. We therefore cast a new reference view selection problem where the best subset of views is defined as the one minimizing the distortion over a view navigation window defined by the user under some transmission bandwidth constraints. We show that the view selection problem is NP-hard, and propose an effective polynomial time algorithm using dynamic programming to solve the optimization problem. Simulation results finally confirm the performance gain offered by virtual view synthesis in the network

    Advanced Free Viewpoint Video Streaming Techniques

    Get PDF
    Free-viewpoint video is a new type of interactive multimedia service allowing users to control their viewpoint and generate new views of a dynamic scene from any perspective. The uniquely generated and displayed views are composed from two or more high bitrate camera streams that must be delivered to the users depending on their continuously changing perspective. Due to significant network and computational resource requirements, we proposed scalable viewpoint generation and delivery schemes based on multicast forwarding and distributed approach. Our aim was to find the optimal deployment locations of the distributed viewpoint synthesis processes in the network topology by allowing network nodes to act as proxy servers with caching and viewpoint synthesis functionalities. Moreover, a predictive multicast group management scheme was introduced in order to provide all camera views that may be requested in the near future and prevent the viewpoint synthesizer algorithm from remaining without camera streams. The obtained results showed that even 42% traffic decrease can be realized using distributed viewpoint synthesis and the probability of viewpoint synthesis starvation can be also significantly reduced in future free viewpoint video services
    • 

    corecore