35,178 research outputs found

    Augmented reality in support of intelligent manufacturing – A systematic literature review

    Get PDF
    Industry increasingly moves towards digitally enabled ‘smart factories’ that utilise the internet of things (IoT) to realise intelligent manufacturing concepts like predictive maintenance or extensive machine to machine communication. A core technology to facilitate human integration in such a system is augmented reality (AR), which provides people with an interface to interact with the digital world of a smart factory. While AR is not ready yet for industrial deployment in some areas, it is already used in others. To provide an overview of research activities concerning AR in certain shop floor operations, a total of 96 relevant papers from 2011 to 2018 are reviewed. This paper presents the state of the art, the current challenges, and future directions of manufacturing related AR research through a systematic literature review and a citation network analysis. The results of this review indicate that the context of research concerning AR gets increasingly broader, especially by addressing challenges when implementing AR solutions.No funding was received

    An Intelligent Robot and Augmented Reality Instruction System

    Get PDF
    Human-Centered Robotics (HCR) is a research area that focuses on how robots can empower people to live safer, simpler, and more independent lives. In this dissertation, I present a combination of two technologies to deliver human-centric solutions to an important population. The first nascent area that I investigate is the creation of an Intelligent Robot Instructor (IRI) as a learning and instruction tool for human pupils. The second technology is the use of augmented reality (AR) to create an Augmented Reality Instruction (ARI) system to provide instruction via a wearable interface. To function in an intelligent and context-aware manner, both systems require the ability to reason about their perception of the environment and make appropriate decisions. In this work, I construct a novel formulation of several education methodologies, particularly those known as response prompting, as part of a cognitive framework to create a system for intelligent instruction, and compare these methodologies in the context of intelligent decision making using both technologies. The IRI system is demonstrated through experiments with a humanoid robot that uses object recognition and localization for perception and interacts with students through speech, gestures, and object interaction. The ARI system uses augmented reality, computer vision, and machine learning methods to create an intelligent, contextually aware instructional system. By using AR to teach prerequisite skills that lend themselves well to visual, augmented reality instruction prior to a robot instructor teaching skills that lend themselves to embodied interaction, I am able to demonstrate the potential of each system independently as well as in combination to facilitate students\u27 learning. I identify people with intellectual and developmental disabilities (I/DD) as a particularly significant use case and show that IRI and ARI systems can help fulfill the compelling need to develop tools and strategies for people with I/DD. I present results that demonstrate both systems can be used independently by students with I/DD to quickly and easily acquire the skills required for performance of relevant vocational tasks. This is the first successful real-world application of response-prompting for decision making in a robotic and augmented reality intelligent instruction system

    Creation of an Experimental Engineering Toolbox for the Digital Transformation of Manual Jet Engine Assembly

    Get PDF
    The fast and safe motion of goods and people is one of the foundations of the modern world. Jet aircraft is the fastest transport at the moment along with high-speed trains. Accordingly, both production and maintenance of aircrafts are an important task of our modern industrial environment as well. Modern aircraft engines require appropriate care and understanding of design and manufacturing. This is even more important, as the production of aerospace engines remains a manual process in many cases with limited data sources. Thus, quality control will need to take into account verification of manufacturing and assembly steps through specific checks and controls whilst implementing additional data sources. Automation of tasks still is at a low level. In this article a review of the challenges with regard to controls, automation and process and technical understanding for aerospace engine production and repair is provided. As this requires the collaboration of many teams and partners, an improvement and step change towards deeper understanding and process efficiency is required. As many operations remain manual, innovations for how humans interact with the technology and collaborate with an industrial environment are needed. The project in this article demonstrates the creation and usage of the proposed solutions for collaboration, troubleshooting and error correction

    AR-Enhanced Human-Robot-Interaction - Methodologies, Algorithms, Tools

    Get PDF
    By using Augmented Reality in Human-Robot-Interaction scenariospropose it is possible to improve training, programming, maintenance and process monitoring. AR Enhanced Human Robot Interaction means it is possible to conduct activities not only in a training facility with physical robot(s) but also in a complete virtual environment. By using virtual environments only a computer and possibly Head Mounting Display is required. This will reduce the bottlenecks for with overbooked physical training facilities. Physical environment for the activities with robot(s) will still be required, however using also virtual environments will increase flexibility and human operator can focus on training more complicated tasks. (C) 2016 The Authors. Published by Elsevier B.V.Partially funded by FP7 EU project LIAA (http://www.project- leanautomation.eu/

    Adopting augmented reality in the age of industrial digitalisation

    Get PDF
    Industrial augmented reality (IAR) is one of the key pillars of the industrial digitalisation concepts, which connects workers with the physical world through overlaying digital information. Augmented reality (AR) market is increasing but still its adoption levels are low in industry. While companies strive to learn and adopt AR, there are chances that they fail in such endeavours due to lack of understanding key challenges and success factors in this space. This study identifies critical success factors and challenges for IAR implementation projects based on field experiments. The broadly used technology, organisation, environment (TOE) framework was used as a theoretical basis for the study, while 22 experiments were conducted for validation. It is found that, while technological aspects are of importance, organisational issues are more relevant for industry, which has not been reflected to the same extent in the literature.No funding source. 22 experiments were conducted with in-kind support (employee time and company access) from Beckhoff Automation, Herman Miller and fluiconnecto as well as University of Cambridge students (see Table 1)

    Parametric Surfaces for Augmented Architecture representation

    Get PDF
    Augmented Reality (AR) represents a growing communication channel, responding to the need to expand reality with additional information, offering easy and engaging access to digital data. AR for architectural representation allows a simple interaction with 3D models, facilitating spatial understanding of complex volumes and topological relationships between parts, overcoming some limitations related to Virtual Reality. In the last decade different developments in the pipeline process have seen a significant advancement in technological and algorithmic aspects, paying less attention to 3D modeling generation. For this, the article explores the construction of basic geometries for 3D model’s generation, highlighting the relationship between geometry and topology, basic for a consistent normal distribution. Moreover, a critical evaluation about corrective paths of existing 3D models is presented, analysing a complex architectural case study, the virtual model of Villa del Verginese, an emblematic example for topological emerged problems. The final aim of the paper is to refocus attention on 3D model construction, suggesting some "good practices" useful for preventing, minimizing or correcting topological problems, extending the accessibility of AR to people engaged in architectural representation
    corecore