56,949 research outputs found

    Solutions for a single carrier 40 Gbit/s downstream long-reach passive optical network

    Get PDF
    This paper presents a single carrier 40 Gbit/s downstream long-reach passive optical network (LR-PON) topology as candidate for upgrading cur rent f ber infrastructure towards higher data rates. A 100 km LR-PON network was investigated and 2 solutions to overcome chromatic dispersion were proposed. Firstly, a dispersion compensated element is added to compensate the mean length of the feeder f ber. Secondly, an advanced modulation scheme, i.e. 3-level electrical duo-binary is introduced. This scheme has the advantage of allowing lower bandwidth APDs and requires only limited additional electronics. Furthermore, to overcome the inherent discrepancy between aggregated line rate and user rate, and hence the reduced power effciency, the BiPON protocol is added to minimize signal processing at the high line rates

    Distributed photonic instrumentation for smart grids

    Get PDF
    Photonic sensor networks possess the unique potential to provide the instrumentation infrastructure required in future smart grids by simultaneously addressing the issues of metrology and communications. In contrast to established optical CT/VT technology, recent developments at the University of Strathclyde in distributed point sensors for electrical and mechanical parameters demonstrate an enormous potential for realizing novel and effective monitoring and protection strategies for intelligent electrical networks and systems. In this paper, we review this technology and its capabilities, and describe recent work in power system monitoring and protection using hybrid electro-optical sensors. We show that wide-area visibility of multiple electrical and mechanical parameters from a single central location may be achieved using this technology, and discuss the implications for smart grid instrumentation

    Protection strategies for next generation passive optical networks -2

    Get PDF
    Next Generation Passive Optical Networks-2 (NGPON2) are being considered to upgrade the current PON technology to meet the ever increasing bandwidth requirements of the end users while optimizing the network operators' investment. Reliability performance of NG-PON2 is very important due to the extended reach and, consequently, large number of served customers per PON segment. On the other hand, the use of more complex and hence more failure prone components than in the current PON systems may degrade reliability performance of the network. Thus designing reliable NG-PON2 architectures is of a paramount importance. Moreover, for appropriately evaluating network reliability performance, new models are required. For example, the commonly used reliability parameter, i.e., connection availability, defined as the percentage of time for which a connection remains operable, doesn't reflect the network wide reliability performance. The network operators are often more concerned about a single failure affecting a large number of customers than many uncorrelated failures disconnecting fewer customers while leading to the same average failure time. With this view, we introduce a new parameter for reliability performance evaluation, referred to as the failure impact. In this paper, we propose several reliable architectures for two important NGPON2 candidates: wavelength division multiplexed (WDM) PON and time and wavelength division multiplexed (TWDM) PON. Furthermore, we evaluate protection coverage, availability, failure impact and cost of the proposed schemes in order to identify the most efficient protection architecture

    An energy-efficient distributed dynamic bandwidth allocation algorithm for Passive Optical Access Networks

    Get PDF
    The rapid deployment of passive optical access networks (PONs) increases the global energy consumption of networking infrastructure. This paper focuses on the minimization of energy consumption in Ethernet PONs (EPONs). We present an energy-efficient, distributed dynamic bandwidth allocation (DBA) algorithm able to power off the transmitter and receiver of an optical network unit (ONU) when there is no upstream or downstream traffic. Our main contribution is combining the advantages of a distributed DBA (namely, a smaller packet delay compared to centralized DBAs, due to less time being needed to allocate the transmission slot) with energy saving features (that come at a price of longer delays due to the longer queue waiting times when transmitters are switched off). The proposed algorithm analyzes the queue size of the ONUs in order to switch them to doze/sleep mode when there is no upstream/downstream traffic in the network, respectively. Our results show that we minimized the ONU energy consumption across a wide range of network loads while keeping delay bounded.Postprint (published version
    • …
    corecore