5 research outputs found

    Towards an Evolutionary Model of Transcription Networks

    Get PDF
    DNA evolution models made invaluable contributions to comparative genomics, although it seemed formidable to include non-genomic features into these models. In order to build an evolutionary model of transcription networks (TNs), we had to forfeit the substitution model used in DNA evolution and to start from modeling the evolution of the regulatory relationships. We present a quantitative evolutionary model of TNs, subjecting the phylogenetic distance and the evolutionary changes of cis-regulatory sequence, gene expression and network structure to one probabilistic framework. Using the genome sequences and gene expression data from multiple species, this model can predict regulatory relationships between a transcription factor (TF) and its target genes in all species, and thus identify TN re-wiring events. Applying this model to analyze the pre-implantation development of three mammalian species, we identified the conserved and re-wired components of the TNs downstream to a set of TFs including Oct4, Gata3/4/6, cMyc and nMyc. Evolutionary events on the DNA sequence that led to turnover of TF binding sites were identified, including a birth of an Oct4 binding site by a 2nt deletion. In contrast to recent reports of large interspecies differences of TF binding sites and gene expression patterns, the interspecies difference in TF-target relationship is much smaller. The data showed increasing conservation levels from genomic sequences to TF-DNA interaction, gene expression, TN, and finally to morphology, suggesting that evolutionary changes are larger at molecular levels and smaller at functional levels. The data also showed that evolutionarily older TFs are more likely to have conserved target genes, whereas younger TFs tend to have larger re-wiring rates

    Model-based analysis of an adaptive evolution experiment with Escherichia coli in a pyruvate limited continuous culture with glycerol

    Get PDF
    Bacterial strains that were genetically blocked in important metabolic pathways and grown under selective conditions underwent a process of adaptive evolution: certain pathways may have been deregulated and therefore allowed for the circumvention of the given block. A block of endogenous pyruvate synthesis from glycerol was realized by a knockout of pyruvate kinase and phosphoenolpyruvate carboxylase in E. coli. The resulting mutant strain was able to grow on a medium containing glycerol and lactate, which served as an exogenous pyruvate source. Heterologous expression of a pyruvate carboxylase gene from Corynebacterium glutamicum was used for anaplerosis of the TCA cycle. Selective conditions were controlled in a continuous culture with limited lactate feed and an excess of glycerol feed. After 200–300 generations pyruvate-prototrophic mutants were isolated. The genomic analysis of an evolved strain revealed that the genotypic basis for the regained pyruvate-prototrophy was not obvious. A constraint-based model of the metabolism was employed to compute all possible detours around the given metabolic block by solving a hierarchy of linear programming problems. The regulatory network was expected to be responsible for the adaptation process. Hence, a Boolean model of the transcription factor network was connected to the metabolic model. Our model analysis only showed a marginal impact of transcriptional control on the biomass yield on substrate which is a key variable in the selection process. In our experiment, microarray analysis confirmed that transcriptional control probably played a minor role in the deregulation of the alternative pathways for the circumvention of the block

    Identification and characterization of novel signalling pathways involved in peroxisome proliferation in humans

    Get PDF
    Peroxisomes represent crucial subcellular compartments for human life and health. They are remarkably dynamic organelles which respond to stimulation by adapting their structure, abundance, and metabolic functions according to cellular needs. Peroxisomes can form from pre-existing organelles by membrane growth and division, which results in peroxisome multiplication/proliferation. Growth and division in mammalian cells follows a well-defined multi-step process of morphological alterations including elongation/remodeling of the peroxisomal membrane (by PEX11β), constriction and recruitment of division factors (e.g. Fis1, MFF), and final membrane scission (by the dynamin-related GTPase Drp1) (Chapter 1). Although our understanding of the mechanisms by which peroxisomes proliferate is increasing, our knowledge on how the division/multiplication process is linked to extracellular signals is limited, in particular in humans. The classical pathway involved in peroxisome proliferation is mediated by a family of ligand-activated transcription factors known as peroxisome proliferator activated receptors (PPARs) (Chapter 1). This project focused on identifying novel signaling pathways and associated factors involved in peroxisome proliferation in humans. In this study, a cell-based peroxisome proliferation assay using the HepG2 cell model with spherical peroxisomal forms has been developed to investigate different stimuli and their ability to induce peroxisome proliferation (Chapters 2 and 3). In this system, peroxisome elongation has been used as the read-out for peroxisome 4 proliferation. We also showed that the number of peroxisomes increased after division of elongated peroxisomes indicating peroxisome proliferation. Different stimuli, such as fatty acids, PPAR agonists and antagonists, have been used in this study. PPAR agonists and antagonists had no stimulatory or inhibitory effect on peroxisome elongation in our assay, suggesting PPAR-independent regulatory processes. However, arachidonic acid and linoleic acid were able to induce peroxisome elongation, whereas palmitic acid and oleic acid were not effective. These findings indicate that general stimulation of fatty acid β-oxidation is not sufficient to induce peroxisome elongation/proliferation in HepG2 cells. Moreover, mRNA expression levels of peroxismal genes have been monitored during a time course in the HepG2 cell-based assay by qPCR. This analysis shows a regulation of expression of peroxins during peroxisome proliferation in human cells and suggests differences in the regulation pattern of PEX11α and PEX11β. In Chapter 4, motif binding sites for transcription factors in peroxisomal genes were analyzed. An initial map of candidate regulatory motif sites across the human peroxisomal genes has been developed (Secondment at the University of Sevilla, Spain with Prof. D. Devos). This analysis also revealed the presence of different transcription factor binding sites in the promoter regions of PEX11α and PEX11β, supporting different regulatory mechanisms. Based on the computational analysis, PEX11β contained a putative SMAD2/3 binding site suggesting a novel link between the canonical TGFβ signaling pathway and expression of PEX11β, a key regulator of peroxisome dynamics and proliferation. 5 Addition of TGFβ to HepG2 cells cultured under serum-free conditions induced elongation/growth of peroxisomes as well as peroxisome proliferation supporting a role for TGFβ signalling in peroxisomal growth and division (Chapter 5). Furthermore, to demonstrate that this induction is through a direct effect of TFGβ on the SMAD binding site found in PEX11β, we performed functional studies using a dual luciferase reporter assay with PEX11β wild type and mutated promoter regions (Secondment at Amsterdam Medical Center, Netherlands with Prof. H. Waterham). Whereas luciferase activity was induced by TGFβ stimulation with the PEX11β wild type promoter, mutation of the SMAD binding site abolished activation. In summary, this study revealed a new signaling pathway involved in peroxisome proliferation in humans and provided a tool to monitor peroxisome morphology and gene expression upon treatment with defined stimuli. Furthermore, I contributed to a study revealing that ER-peroxisome contacts are important for peroxisome elongation (Chapter 6). Our group identified peroxisomal acyl-CoA binding domain protein 5 (ACBD5), ACBD4 and VABP as a molecular linker between peroxisomes and the ER (Costello et al., 2017). Motif analysis of ACBD4 and ACBD5 promoter regions revealed that unlike PEX11β, these genes do not contain a binding site for SMAD, suggesting they are not co-regulated. Also, ACBD4 and ACBD5 do not share any common transcription factor binding sites suggesting different regulation. An interesting binding motif within the ACBD4 promoter is a glucocorticoid receptor binding site. In our study, we found potential glucocorticoid response elements (GRE) in other peroxisomal genes encoding β-oxidation enzymes. This may suggest an important role for glucocorticoid receptors in activating expression of peroxisomal genes resulting in the stimulation of fatty acid breakdown and energy production

    Co-option of pre-existing pathways during Rhizobium-legume symbiosis evolution

    Get PDF
    Fixed nitrogen is one of the most limiting factors for plant growth. One of the most important nitrogen-fixing systems is the rhizobium root nodule symbiosis. In this Thesis I have studied the legume-rhizobium symbiosis, starting from the idea that part of pre-existing signalling pathways have been co-opted during evolution of this mutualistic interaction. Gene duplications -of which a whole genome duplication (WGD) is the most dramatic variant- are known as important driving forces in evolution of new traits. 56 to 65 million years ago an ancestral legume species within the Papilionoidae subfamily (Papilionoids) experienced a WGD event and subsequently gave rise to several major phylogenetic crowns. I hypothesize that among the orthologous gene pairs maintained are genes that are essential for nodulation. I adopted a phylogenetic strategy to identify new candidate genes involved in the legume-Rhizobium symbiosis In a targeted approach, we focussed on the cytokinin phosphorelay pathway. This resulted in the identification of one gene pair encoding type-A Response Regulators (RRs) with a positive regulatory role for these proteins in root nodule formation. Yet the illustrated role for MtRR9 and MtRR11 in rhizobial symbiosis provides a proof of principle of this method to identify gene pairs involved in legume specific characters. An unbiased search for paralogous gene pairs revealed two conserved gene duplications in the NADPH oxidases gene family. NADPH oxidases are reactive oxygen species (ROS) producing enzymes. We identified two sets of duplicated genes that have been maintained after the Papilionoid specific WGD and we show that MtRBOHA and MtRBOHG are redundant, yet essential during symbiosis. Moreover, although it is commonly believed that exclusively pericycle cells give rise to the lateral root primordium, similar as seen in Arabidopsis thaliana, we provide morphological evidence that in the studied legume species this is not the case. In both, Lotus and Medicago, also root cortical cell divisions occur during lateral root formation. Furthermore, we found a striking correlation in the cell layers that are recruited during lateral root and nodule primordium formation. This supports the hypothesis that at least parts of the lateral root developmental program have been recruited during evolution of symbiotic root nodules. </p
    corecore