11,263 research outputs found

    Constraints: the Heart of Domain and Application Engineering in the Product Lines Engineering Strategy

    No full text
    International audienceDrawing from an analogy between features based Product Line (PL) models and Constraint Programming (CP), this paper explores the use of CP in the Domain Engineering and Application Engineering activities that are put in motion in a Product Line Engineering strategy. The start idea is simple: both CP and PL engineering deal with variables, and constraints that these variables must satisfy. Therefore, specifying a PL as a constraint program instead of a feature model, or another kind of PL formalism, carries out two important qualities of CP: expressiveness and direct automation. On the one hand, variables in CP can take values over boolean, integer, real or even complex domains (i.e., lists, arrays and trees) and not only boolean values as in most PL languages such as the Feature-Oriented Domain Analysis (FODA). Specifying boolean, arithmetic, symbolic and reified constraint, provides a power of expression that spans beyond that provided by the boolean dependencies in FODA models. On the other hand, PL models expressed as constraint programs can directly be executed and analyzed by off-the-shelf solvers. Starting with a working example, this paper explores the issues of (a) how to specify a PL model using CP, including in the presence of multi-model representation, (b) how to verify PL specifications, (c) how to specify configuration requirements and (d) how to support the product configuration activity. Tests performed on a benchmark of 50 PL models show that the approach is efficient and scales up easily to very large and complex PL specification

    Context-aware Dynamic Discovery and Configuration of 'Things' in Smart Environments

    Full text link
    The Internet of Things (IoT) is a dynamic global information network consisting of Internet-connected objects, such as RFIDs, sensors, actuators, as well as other instruments and smart appliances that are becoming an integral component of the future Internet. Currently, such Internet-connected objects or `things' outnumber both people and computers connected to the Internet and their population is expected to grow to 50 billion in the next 5 to 10 years. To be able to develop IoT applications, such `things' must become dynamically integrated into emerging information networks supported by architecturally scalable and economically feasible Internet service delivery models, such as cloud computing. Achieving such integration through discovery and configuration of `things' is a challenging task. Towards this end, we propose a Context-Aware Dynamic Discovery of {Things} (CADDOT) model. We have developed a tool SmartLink, that is capable of discovering sensors deployed in a particular location despite their heterogeneity. SmartLink helps to establish the direct communication between sensor hardware and cloud-based IoT middleware platforms. We address the challenge of heterogeneity using a plug in architecture. Our prototype tool is developed on an Android platform. Further, we employ the Global Sensor Network (GSN) as the IoT middleware for the proof of concept validation. The significance of the proposed solution is validated using a test-bed that comprises 52 Arduino-based Libelium sensors.Comment: Big Data and Internet of Things: A Roadmap for Smart Environments, Studies in Computational Intelligence book series, Springer Berlin Heidelberg, 201

    Combining configuration and recommendation to enable an interactive guidance of product line configuration

    No full text
    This paper is interested in e-commerce for complex configurable products/systems. E-commerce makes a wide use of recommendation techniques to help customers identify relevant products or services in large collections of offers. One particular way to achieve this is to offer customers a panel of options among which they can select their preferred ones. A trend in the industry is to go a step further, beyond the selection of pre-defined products from a catalogue by handling products customization. The systems engineering community has shown that, based on product line engineering methods, techniques and tools, it is possible to produce customized products efficiently and at low cost. The problem is that there are usually so many products in a PL that it is impossible to specify all of them explicitly, and therefore traditional recommendation techniques cannot be simply applied. This paper proposes an approach that combines two complementary forms of guidance: configuration and recommendation, to help customers define their own products out of a product line specification. The proposed approach, called interactive configuration supports the combination by organizing the configuration process in a series of partial configurations where decisions are made by the recommendation. This paper illustrates this process by applying it to an example with the content based method for recommendation and the a priori configuration approach

    Working Notes from the 1992 AAAI Workshop on Automating Software Design. Theme: Domain Specific Software Design

    Get PDF
    The goal of this workshop is to identify different architectural approaches to building domain-specific software design systems and to explore issues unique to domain-specific (vs. general-purpose) software design. Some general issues that cut across the particular software design domain include: (1) knowledge representation, acquisition, and maintenance; (2) specialized software design techniques; and (3) user interaction and user interface

    Fault tolerant architectures for integrated aircraft electronics systems, task 2

    Get PDF
    The architectural basis for an advanced fault tolerant on-board computer to succeed the current generation of fault tolerant computers is examined. The network error tolerant system architecture is studied with particular attention to intercluster configurations and communication protocols, and to refined reliability estimates. The diagnosis of faults, so that appropriate choices for reconfiguration can be made is discussed. The analysis relates particularly to the recognition of transient faults in a system with tasks at many levels of priority. The demand driven data-flow architecture, which appears to have possible application in fault tolerant systems is described and work investigating the feasibility of automatic generation of aircraft flight control programs from abstract specifications is reported

    A systematic literature review on the semi-automatic configuration of extended product lines

    Get PDF
    Product line engineering has become essential in mass customisation given its ability to reduce production costs and time to market, and to improve product quality and customer satisfaction. In product line literature, mass customisation is known as product configuration. Currently, there are multiple heterogeneous contributions in the product line configuration domain. However, a secondary study that shows an overview of the progress, trends, and gaps faced by researchers in this domain is still missing. In this context, we provide a comprehensive systematic literature review to discover which approaches exist to support the configuration process of extended product lines and how these approaches perform in practice. Extend product lines consider non-functional properties in the product line modelling. We compare and classify a total of 66 primary studies from 2000 to 2016. Mainly, we give an in-depth view of techniques used by each work, how these techniques are evaluated and their main shortcomings. As main results, our review identified (i) the need to improve the quality of the evaluation of existing approaches, (ii) a lack of hybrid solutions to support multiple configuration constraints, and (iii) a need to improve scalability and performance conditions

    Separation of Concerns in Feature Modeling: Support and Applications

    Get PDF
    International audienceFeature models (FMs) are a popular formalism for describing the commonality and variability of software product lines (SPLs) in terms of features. SPL development increasingly involves manipulating many large FMs, and thus scalable modular techniques that support compositional development of complex SPLs are required. In this paper, we describe how a set of complementary operators (aggregate, merge, slice) provides practical support for separation of concerns in feature modeling. We show how the combination of these operators can assist in tedious and error prone tasks such as automated correction of FM anomalies, update and extraction of FM views, reconciliation of FMs and reasoning about properties of FMs. For each task, we report on practical applications in different domains. We also present a technique that can efficiently decompose FMs with thousands of features and report our experimental results

    Third Conference on Artificial Intelligence for Space Applications, part 2

    Get PDF
    Topics relative to the application of artificial intelligence to space operations are discussed. New technologies for space station automation, design data capture, computer vision, neural nets, automatic programming, and real time applications are discussed

    Modeling and Design of Millimeter-Wave Networks for Highway Vehicular Communication

    Get PDF
    Connected and autonomous vehicles will play a pivotal role in future Intelligent Transportation Systems (ITSs) and smart cities, in general. High-speed and low-latency wireless communication links will allow municipalities to warn vehicles against safety hazards, as well as support cloud-driving solutions to drastically reduce traffic jams and air pollution. To achieve these goals, vehicles need to be equipped with a wide range of sensors generating and exchanging high rate data streams. Recently, millimeter wave (mmWave) techniques have been introduced as a means of fulfilling such high data rate requirements. In this paper, we model a highway communication network and characterize its fundamental link budget metrics. In particular, we specifically consider a network where vehicles are served by mmWave Base Stations (BSs) deployed alongside the road. To evaluate our highway network, we develop a new theoretical model that accounts for a typical scenario where heavy vehicles (such as buses and lorries) in slow lanes obstruct Line-of-Sight (LOS) paths of vehicles in fast lanes and, hence, act as blockages. Using tools from stochastic geometry, we derive approximations for the Signal-to-Interference-plus-Noise Ratio (SINR) outage probability, as well as the probability that a user achieves a target communication rate (rate coverage probability). Our analysis provides new design insights for mmWave highway communication networks. In considered highway scenarios, we show that reducing the horizontal beamwidth from 90∘90^\circ to 30∘30^\circ determines a minimal reduction in the SINR outage probability (namely, 4⋅10−24 \cdot 10^{-2} at maximum). Also, unlike bi-dimensional mmWave cellular networks, for small BS densities (namely, one BS every 500500 m) it is still possible to achieve an SINR outage probability smaller than 0.20.2.Comment: Accepted for publication in IEEE Transactions on Vehicular Technology -- Connected Vehicles Serie
    • …
    corecore