
Separation of Concerns in Feature Modeling: Support

and Applications

Mathieu Acher, Philippe Collet, Philippe Lahire, Robert France

To cite this version:

Mathieu Acher, Philippe Collet, Philippe Lahire, Robert France. Separation of Concerns in Fea-
ture Modeling: Support and Applications. AOSD 2012 - International Conference on Aspect-
Oriented Software Development, Mar 2012, Potsdam, Germany. ACM, 2012. <hal-00767423>

HAL Id: hal-00767423

https://hal.inria.fr/hal-00767423

Submitted on 19 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-UNICE

https://core.ac.uk/display/52782576?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-00767423

Separation of Concerns in Feature Modeling:
Support and Applications

Mathieu Acher
University of Namur

PReCISE Research Centre, Belgium
macher@fundp.ac.be

Philippe Collet
Philippe Lahire

Université Nice Sophia Antipolis,
France

{collet,lahire}@i3s.unice.fr

Robert B. France
Computer Science Department

Colorado State University, USA
france@cs.colostate.edu

Abstract
Feature models (FMs) are a popular formalism for describ-
ing the commonality and variability of software product
lines (SPLs) in terms of features. SPL development increas-
ingly involves manipulating many large FMs, and thus scal-
able modular techniques that support compositional devel-
opment of complex SPLs are required. In this paper, we
describe how a set of complementary operators (aggregate,
merge, slice) provides practical support for separation of
concerns in feature modeling. We show how the combina-
tion of these operators can assist in tedious and error prone
tasks such as automated correction of FM anomalies, update
and extraction of FM views, reconciliation of FMs and rea-
soning about properties of FMs. For each task, we report on
practical applications in different domains. We also present
a technique that can efficiently decompose FMs with thou-
sands of features and report our experimental results.

Categories and Subject Descriptors D.2.2 [Software En-
gineering]: Design Tools and Techniques

General Terms Design, Languages, Theory

1. Introduction
The goal of software product line (SPL) engineering is
to produce a family of related program variants for a do-
main [23]. SPL development starts with an analysis of the
domain to identify commonalities and differences between
the members of the product line. A common way is to de-
scribe variabilities of an SPL in terms of features which are
domain abstractions relevant to stakeholders and are typ-
ically increments in program functionality [8]. A Feature
Model (FM) is used to compactly define all features in an

[Copyright notice will appear here once ’preprint’ option is removed.]

SPL and their valid combinations; it is basically an AND-
OR graph with propositional constraints [12, 27, 32].

FMs are becoming increasingly large and complex. A
contributing factor to their growing complexity is that FMs
are being used not only to describe variability in software
designs, but also variability in wider system contexts, at dif-
ferent times in the development and in different parts of the
system structures [15, 19, 22, 24, 35]. As a result, the list of
concerns that may be considered in an FM is very compre-
hensive [8, 34] ranging from hardware description [19], or-
ganizational structure [24], business or implementation de-
tails [22]. In practice, the concerns are related in a variety of
ways and there can be hundreds of features whose legal com-
binations are governed by many and often complex rules.
The automated extraction of FMs from large implemented
software systems now produces very large FMs. As an ex-
treme case, the variability model of Linux exhibits more than
6000 features [29].

It has been observed that maintaining a single large FM
for the entire system may not be feasible [14, 23]. On the
one hand, several FMs may be originally separated and com-
bined: It is the case when one describes the variability of
(sub-)systems that are by nature modular entities (e.g., soft-
ware components or services [5]), when independent sup-
pliers describe the variability of their different products in
software supply chains [13, 16], or when a multiplicity of
SPLs should be integrated [14, 15]. On the other hand, it
can be the intention of an SPL practitioner to modularize the
variability description of the system according to different
criteria or concerns. It is the case when external variabil-
ity is distinguished from internal variability [22, 23], when
FMs are organized in layers [19], or when a simplified rep-
resentation of an FM (a view) has been tailored for a spe-
cific stakeholder, role, task [17]. With FMs being increas-
ingly complex, describing various concerns of an SPL and
handled by several stakeholders (or even different organiza-
tions), managing them with a large number of features that
are related in a variety of ways is intuitively a problem of
Separation of Concerns (SoC) [9, 30]. First, composing sup-
port is needed to group and evolve a set of similar FMs, or

1 2012/3/2

to manage a set of inter-related FMs [2]. Second, some com-
plementary decomposing support is as important to reason
about local properties or to support multi-perspectives of a
typically large FM [4]. Due to the complexity of FMs, SoC
support should be soundly defined and automated as much
as possible. In previous work, we designed a set of compo-
sition (insertion, merging, aggregation) [2] and decomposi-
tion (slice) [4] operators.Their semantic properties were pre-
cisely defined in terms of configuration set and feature hi-
erarchy, and fully automated techniques were developed to
synthesize FMs. Using these operators separately has practi-
cal but limited interests. In many scenarios and case studies,
an SPL practitioner rather needs to combine both techniques
and perform sequences of composition and decomposition,
while reasoning about intermediate results.

In this paper, we show how the combined use of compo-
sition and decomposition operators forms a consistent and
powerful support for SoC in feature modeling. We describe
several novel applications of the operators, detailing the ob-
tained benefits. These applications comprise i) the corrective
capabilities of the operators themselves, ii) view extractions
and updates on FMs, with the benefit of handling cross-tree
constraints, iii) reconciling FMs that come from different
stakeholders or organizations, and iv) reasoning about two
kinds of variability to check important properties (realizabil-
ity, usefulness) of an SPL. For each application, we report on
practical use in different case studies. We revisit and imple-
ment some existing works with our operators and we report
better results either in terms of capability or scalability. Fur-
thermore, we present a technique that can efficiently decom-
pose FMs with thousands of features and outperforms our
previous implementation based on binary decision diagrams.

2. Background: Feature Models
FMs were first introduced in the FODA method [19], which
also provided a graphical representation through Feature Di-
agrams. FMs are now widely adopted with support of formal
semantics, reasoning techniques and tooling [8, 10, 12, 27].
An FM defines both a hierarchy, which structures features
into levels of increasing detail, and some variability aspects
expressed through several mechanisms. When decomposing
a feature into subfeatures, the subfeatures may be optional
or mandatory or may form Xor or Or-groups. In addition,
any propositional constraints (e.g., implies or excludes) can
be specified to express more complex dependencies between
features. We consider that an FM is composed of a feature di-
agram coupled with a set of constraints expressed in propo-
sitional logic. Figure 1a shows an example of an FM. The
feature diagram is depicted using a FODA-like graphical no-
tation used throughout the paper.

The hierarchy of an FM is represented by a rooted tree
G = (F , E, r) where F is a finite set of features and
E ⊆ F × F is a finite set of edges (edges represent top-
down hierarchical decomposition of features, i.e., parent-
child relations between them) ; r ∈ F being the root feature.

An FM defines a set of valid feature configurations. A
valid configuration is obtained by selecting features so that
i) if a feature is selected, its parent is also selected; ii) if
a parent is selected, all the mandatory subfeatures, exactly
one subfeature in each of its Xor-groups, and at least one of
its Or groups are selected; iii) propositional constraints hold.
For example, in Figure 1a, { A, B, C, F, P, S, T, W} is a
valid configuration, the features D and F cannot be selected
at the same time and E cannot be selected without C due to
the parent-child relation between E and C.

DEFINITION 1 (Configuration Semantics). A configuration
of an FM g is defined as a set of selected features. JgK
denotes the set of valid configurations of the FM g and is
thus a set of sets of features.

FMs have been semantically related to propositional
logic [12]. The set of configurations represented by an FM
can be described by a propositional formula φ defined over
a set of Boolean variables, where each variable corresponds
to a feature (see Figure 1c for the formula corresponding to
the FM of Figure 1a). The translation of FMs into logic rep-
resentations allows one, as we will see in the next sections,
to use reasoning techniques for automated FM analysis [10].

3. Composition and Decomposition Support
In previous work [2, 4], we designed a set of composition
and decomposition operators that produce a new FM from
one or more than one input FMs. We have defined the se-
mantics of these operators in terms of:

configuration semantics We consider that the primary mean-
ing of an FM, known as its configuration semantics, is a
set of legal configurations – sets of selected features that
respect the dependencies entailed by the diagram and the
cross-tree constraints. We thus define the semantics of
each operator in terms of the relationship between the
configuration sets of the input FMs and the resulting FM.

feature hierarchy Another important property of an FM is
the way features are organized – reflected in the feature
hierarchy. We recall that two FMs can have identical con-
figuration semantics, yet different hierarchies and thus
ontological meaning [10, 29, 32]. As a result, we con-
sider that the feature hierarchy should also be part of the
semantics of the operators.

3.1 Aggregate
The aggregate operator supports cross-tree constraints be-
tween features so that separated FMs can be inter-related.
The input FMs are aggregated under a synthetic root
syntheticft so that the root features of input FMs are child-
mandatory features of syntheticft. In addition, the propo-
sitional constraints are added in the resulting FM. For ex-
ample, the aggregate operator can be used to compose four
FMs together with constraints (see Figure 5, page 6).

The properties of the aggregated FM heavily depends on
the set of propositional constraints used during the aggre-

2 2012/3/2

W

constraints
E implies D

R implies E

D excludes F

S implies (F and not E)

P

R S

fm1

AV

T U

B C D

E F

Optional

Mandatory

Xor-Group

Or-Group

(a) FM: FODA-like representation

Jfm1K = {
{A,B,C,D,E, P,R, T, U,W},
{A,B,C, F, P, S, T, U,W},
{A,B,C,D,E, P,R, T,W},
{A,B,C, F, P, S, T, V,W},
{A,B,C, F, P, S, T, U, V,W},
{A,B,C, F, P, S, T,W},
{A,B,C,D,E, P,R, T, V,W},
{A,B,C,D,E, P,R, T, U, V,W}
}

(b) corresponding set of configu-
rations

φfm1
= W // root

∧W ⇔ P ∧ W ⇔ T
∧ U ⇒W // optional
∧ V ⇒ T
∧ A⇔ T // mandatory
∧ A⇔ B ∧ A⇔ C
∧ D ⇒ A
∧ E ⇒ C ∧ F ⇒ C
// Or-group
∧ P ⇒ R ∨ S
∧ R⇒ P ∧ S ⇒ P
// constraints
∧ E ⇒ D ∧ R⇒ E
∧ D ⇒ ¬F ∧ S ⇒ (F ∧ ¬E)

(c) corresponding propositional formula

Figure 1. FM, set of configurations and propositional logic encoding

gate. It may lead to situations where the aggregated FM does
not represent any valid configuration or includes dead or core
features (see Definition 2). We consider that the aggregate
operator is purely syntactical. As we will see, other comple-
mentary techniques can be applied in case an SPL practi-
tioner may want to simplify the aggregated FM or to reason
about its properties.

3.2 Merge
The merge operator is dedicated to the composition of FMs
that exhibit similar features (i.e., features with the same
name). In this case, the merge operator can be used to merge
the overlapping parts of the FMs and then to obtain an
integrated FM. The merge uses name-based matching: two
features match if and only if they have the same name.

Configuration Semantics. The properties of a merged FM
produced by an application of the merge operator are for-
malized in terms of the sets of configurations of input FMs.
Several modes are defined for the merge operator. We only
describe here the modes that we will use in the remainder
of the paper. The intersection mode is the most restrictive
option: the merged FM, FMr, expresses the common valid
configurations of FM1 and FM2. The merge operator in the
intersection mode is denoted as follows: FM1 ⊕∩ FM2 =
Result. The relationship between a merged FM Result in
intersection mode and two input FMs FM1 and FM2 can
be expressed as follows:

JFM1K ∩ JFM2K = JResultK

Another merge operator, called diff, is denoted as FM1 ⊕\
FM2 = Result. The following defines the semantics of
this operator:

JFM1K\JFM2K = {x ∈ JFM1K |x /∈ JFM2K} = JResultK

Hierarchy. Several FMs, with different hierarchies, can
represent the same set of configurations [10, 29, 32]. So in
particular several merged FMs can be produced and consis-
tently represent the expected set of configurations while hav-
ing different hierarchies. Intuitively, the more a parent-child
relation occurs in the input FMs, the more an edge in the

merged hierarchy should be retained. The problem of choos-
ing a hierarchy from amongst a set of hierarchies can be for-
mulated as a minimum spanning tree problem (see details
in [1]). An example of merge operation in intersection mode
is given in Figure 8, page 7.

3.3 Slice Operator
The slice operator aims at simplifying or abstracting FMs
by focusing on selected aspects of semantics. The overall
idea behind FM slicing is similar to program slicing [36].
Program slicing techniques proceed in two steps: the subset
of elements of interest (e.g., a set of variables of interest
and a program location), called the slicing criterion, is first
identified; then, a slice (e.g., a subset of the source code)
is computed. In the context of FMs, we define the slicing
criterion as a set of features considered to be pertinent by an
SPL practitioner while the slice is a new FM.

A

B C D

E F
constraints
E implies D
D implies E

(a) [[fm2]] = {{A, B, C, D,
E},{A, B, C, F}}

W

constraints
E implies D
R implies E

P

R S AV

T U

B C D

E F

(b) [[fmAll]] = [[fm1]]

Figure 2. Two slice operations on fm1 (see Figure 1a)

Configuration Semantics. We define slicing as a unary
operation on FM, denoted ΠFslice

(FM) where Fslice =
{ft1, ft2, ..., ftn} ⊆ F is a set of features.

The result of the slicing operation is a new FM, FMslice,
such that: JFMsliceK = {x ∩ Fslice | x ∈ JFMK } (called
the projected set of configurations).

Hierarchy. Intuitively, the hierarchy of FMslice is such
that features are connected to their closest ancestor if their
parent is not part of the slicing criterion. A formal definition
can be found in [1]. Two examples of slice operation are
given in Figure 2.

3 2012/3/2

Case study Concerns Complexity
À Composing Multiple Variability Artifacts
(domain: medical imaging, grid comput-
ing ; stakeholders: medical imaging/grid ex-
perts) [5]

the variability is described at different places
of the workflow, describing various concerns
of connected services

dozens of FMs (up to 30),
hundreds of inter-related
features (up to 400)

Á Modeling Variability From Requirements
to Runtime (domain: video surveillance (VS)
systems ; stakeholders: VS expert, software
engineer) [6]

the modeling of requirements and software
variability is explicitly separated in two FMs,
VSAR and PC

2 FMs, 77 features and 108

configurations in VSAR, 51
features and 106 configura-
tions in PC, 39 constraints.

Â Management of Product Line and Software
Variability (domain: any ; stakeholders: prod-
ucts manager, software engineer) [22]

two kinds of variability (software and prod-
uct line) are specified and maintained in two
separated FMs fmPL and fmsoftware

2 FMs, 25 features in
fmPL, 11 features in
fmsoftware, 13 constraints
;

Ã Reverse Engineering FMs (domain: com-
ponent and plugin based systems, stake-
holder: software architect) [3]

multiple variability sources (including archi-
tect knowledge) are combined to construct
semi-automatically an FM

92 features and 158 con-
straints ; the number of valid
configurations varies from≈
1011 to ≈ 106 ;

Figure 3. SoC in the case studies

Technique Description Operators Application
Updating FM Views several FM views are inter-related: The variability information is

kept up-to-date in the different views, possibly by correcting some
anomalies introduced by some constraints

aggregate,
slice

ÀÁÂÃ

Supporting Multiple
Perspectives

given an FM or a set of FMs, a stakeholder wants to focus only on
a specific concern related to its expertises, role, task

aggregate,
slice

À

Reconciling FMs two (or more than two) FMs cannot be directly compared or
merged: They are reconciled by removing unnecessary details

slice, merge ÀÃ

Reasoning about
Two Kinds of Vari-
ability

two FMs describing two variability concerns are inter-related:
Reasoning techniques are applied to reason about their relation-
ships

aggregate,
slice, merge,

ÁÂ

Figure 4. SoC in feature modeling

4. Applying Separation of Concerns
Given these composition and decomposition mechanisms,
we now argue that these operators, together with other rea-
soning and editing operators, form a consistent and powerful
support for SoC in feature modeling.

Several usage scenarios can be envisaged:

• When an FM is decomposed into smaller FMs (using the
slice operator), one may need to reason about the differ-
ent sets of configurations or simply modify the smaller
FMs. The composition operators can be applied after-
wards to recompose the smaller FMs ;
• When some FMs are composed with constraints (using

the aggregate operator), one may need to simplify, re-
decompose or check the satisfiability of the resulting
composed FM ;
• Before merging two FMs, one may need to reconcile

(or align) the two FMs in case the hierarchy and the
vocabulary used in the two FMs differs ;

Beyond these simple examples, we now show that though
the sole use of the composition / decomposition operators
has practical interests, the area of applications grows when
these operators are combined together1.

The following sections will demonstrate either new capa-
bilities in feature modeling or better scalability in represen-
tative scenarios of the field. Each presented technique has
been validated on experimental or real-world case studies.
Figure 4 gives an overview of the contribution. It charac-

1 The tooling and language support, FAMILIAR, is out of the scope of
this paper. The interested reader can visit https://nyx.unice.fr/
projects/familiar/

terizes each technique, reports the operators involved in the
realization of the technique as well as the practical use in
case studies. The numbers correspond to the different case
studies described in Figure 3, including the application do-
main, the stakeholders involved, the concerns considered as
well as the complexity of FMs.

4.1 Corrective Capabilities
Manual or automatic creation of FMs may generate anoma-
lies in them. Generally, these anomalies are regarded as a
negative property of an FM since it can easily decrease its
maintainability or understandability.

DEFINITION 2 (Dead and Core features). A feature f of an
FM is dead if it cannot be part of any of the valid configura-
tions. A feature f of an FM is a core feature if it is part of
all valid configurations.

Error-free FMs. Benavides et al. identify different kinds
of FM anomalies [10]: i) dead features (see Definition 2) ;
ii) false optional features are core features (see Definition 2),
despite not being modeled as mandatory ; iii) wrong feature
group: For example, features may form an Or-group while
being mutually exclusive (see features R and S in the FM
of Figure 1a) ; iv) or redundancies [10] (e.g., cross-tree con-
straints may be redundant). Despite the need of automatic
support for anomaly analysis in FMs, there is a lack of pro-
posals that focus on producing error-free FMs, i.e., FMs that
do not contain anomalies as the ones mentioned above.

A form of corrective explanations has been developed
in [10]. It indicates changes (or edits) to be made in the
original FM so that it does not contain anomalies anymore.

4 2012/3/2

https://nyx.unice.fr/projects/familiar/
https://nyx.unice.fr/projects/familiar/

These changes are suggestions, usually once anomalies have
been detected and explained, to be applied to the original
FM. In this case, the set of configurations of the original FM
may be altered (e.g., a dead feature may no longer be dead
once changes have been applied). This approach is more ap-
propriate for handling human errors, for example, when an
SPL practitioner elaborates an FM and unintentionally in-
troduces errors. On the contrary automatic correction (or
simplification) aims at removing anomalies from the origi-
nal FM while the set of configurations remains exactly the
same. Our contribution here takes place in this category, as
automatic correction pursues a different objective: anoma-
lies are not necessary errors but an intentional, controlled
and/or temporary properties of an FM, for example, when
automatic operations are conducted on FMs. As we will see
in the next section, it usually happens when two (or more
than two) FMs are inter-related by constraints. In this case,
features may become dead or core features.

Automatic simplification using the slice. The slicing im-
plementation we propose ensures, by construction, that there
is no dead feature, correctly detects core features (thereby
false optional features) and avoids redundancy in the repre-
sentation (e.g., we add an implies/excludes constraint only if
it is not already induced by the FM) [4]. Hence, we guarantee
that the sliced FM does not contain anomalies. As a result,
the slice operator can be used as an automated technique
to correct anomalies of FMs while preserving the original
set of configurations and hierarchy. Moreover, the corrective
modifications applied to the original FM can be detected and
reported to an SPL practitioner. For example, the slice oper-
ation is performed on the FM of Figure 1a, fm1, using all
features of fm1 as a slicing criterion. The resulting FM is
fmAll (see Figure 2b). Obviously the set of configurations
represented by fmAll is the same as the set of configura-
tions represented by fm1, while their feature hierarchies are
equal. We can notice that i) the features R and S form an
Xor-group in fmAll (and no longer form an Or-group as in
fm1) ; ii) the features E and F form an Xor-group (and are
no longer optional as in fm1) ; iii) some constraints are no
longer present in fmAll to avoid redundancy.

As an application, we directly used this correction tech-
nique to automatically remove anomalies in the randomly
generated FMs that served as inputs for our experimenta-
tions (see Section 5.1 and 7). Both configuration sets and
hierarchies were maintained while correcting anomalies.

4.2 Managing Different FM Views
We illustrate the need to manage several FMs, possibly inter-
related, using an example in the medical imaging domain. In
this domain, medical imaging services (e.g., algorithms) are
assembled to form complex processing chains (also called
workflows). Variability affects different concerns or views
of a medical imaging service. In Figure 5, the service is
described through different views: information about the
deployment on the grid, internal algorithms, the supported
communication protocols and the type of handled medical

Format

MetaData

Anonymized

Name

Nifti Analyze

ModalityAcquisition

CTMRI

T2

PET

Medical Image

FMMIsupport_UPDATED

MetaData implies Analyze

Analyze excludes CT

(a)

FMalgo_UPDATED

Interactive

Model

PAM

MI Algorithm

Method

(b)

Figure 6. Updating FM views

images. As multiple sources of variation are present within a
service, several FMs are used where each FM focuses on
a specific view of a service. As shown in [5], these FMs
can then be used to check consistency between composed
services and to facilitate their coherent configurations.

4.2.1 Updating FM views
In practice, the different FM views of a service are not in-
dependent. The workflow designer has to add constraints to
enforce interactions between the FM views. In our example,
we consider the following constraints:
MIServiceconstraints = {
(c1) FMgrid.Kerberos⇒ FMproto.KDC

(c2) FMgrid.SSLAuth⇔ FMproto.SSL

(c3) FMMIsupport.MRI ⇒ FMalgo.PAM

(c4) FMMIsupport.CT ∨ FMMIsupport.SPEC

⇒ FMalgo.BAM

(c5) FMMIsupport.Anonymized

⇒ FMproto.HeaderEncoding

(c6) ¬FMgrid.GPU ∨ ¬FMalgo.Interactive

(c7) FMalgo.Interactive⇒ FMgrid..Linux

(c8) FMMIsupport.DICOM

⇒ FMproto.Rotation ∧ FMproto.PAM

(c9) FMalgo.Interactive⇒ FMproto.HeaderEncoding }

Determining the impact of these constraints on each FM
view cannot be done manually or even automatically with
current techniques and tools [10]. We rely on the corrective
capabilities developed in Section 4.1 to perform the update
of the different FM views.

Using the slice operator, it simply consists in i) aggre-
gating the four feature models into a single one (fmService)
with constraints mapped on it, ii) invoking slice four times
producing as much sliced FMs, the slicing criterion being
respectively the features of each of the four feature models.
As a result, Figure 6a and Figure 6b correspond to the sliced
FM with respectively the features of the FMs FMMIsupport

and FMalgo. The two other FMs are not impacted by the
constraints mapped on fmService.

4.2.2 Supporting multiple perspectives
On the same example, the slice operator can be used to
extract other views (or perspectives) of a service. In Fig-
ure 7, we capture expertises related to security features or
to the medical imaging domain. Two slice operations are
applied and compute two FM views, stored into fmViewMI

5 2012/3/2

Medical Imaging Registration

Service

:grid

:proto

:alg

:out

Sc. Linux excludes MatLab

FileSizeLimitProcessor

x32 x64

OS

Windows Linux

GridComputingNode

GridDeployment

Library Required

GPUBits

Ubuntu Sc. Linux

Authentification

SSLAuthPasswordKerberos

Matlab

FMgrid

TransferProtocol

HTTPS HTTP

Header

Encoding

NetworkProtocol

Crypto

NetworkSecurity

SSLPGP

Asymetric Symetric

DES TripleDES KDC

FMproto

HeaderEncoding implies HTTPS

Format

MetaData

Anonymized

Name

DICOM Nifti Analyze

ModalityAcquisition

CT SPECMRI

T1 T2

PET

Medical Image

FMMIsupport

MetaData implies DICOM or Analyze

Analyze excludes (CT and SPEC and T1)

FMalgo

Interactive

Model

PAM BAM

Linear

Rotation

Affine

Non Grid

MI Algorithm

Scaling

Method

Atlas

CFL EMS

EMS implies Affine or Scaling

Figure 5. Variability and concerns within a medical imaging service

and fmViewSecurity. The slicing criterion used to compute
fmViewMI (resp. fmViewSecurity) contains features from the
FMs FMMI , FMalgo and FMgrid (resp. FMMI , FMproto

and FMgrid). The slice guarantees that all the interactions
existing with other FM views are still enforced.

4.2.3 Practical applications
Reverse Engineering Architectural FMs. Besides the above
application, the slicing technique was also extensively used
in a tool-supported approach to reverse engineer software
variability from an architectural perspective [3]. The pro-
posed approach was evaluated when applied to FraSCAti, a
large and highly configurable component and plugin-based
system. Using the slicing technique an accurate view (i.e.,
an FM) of the software architecture was obtained. The idea
was that the software architecture FM, originally produced
by an extraction procedure, represents only an over approx-
imation in terms of sets of valid configurations. Hence sev-
eral sources of information were combined, namely software
architecture, plugin dependencies and the correspondences
between software elements and plugins. When combined
through aggregation, slicing is used to update the view cor-
responding to the software architecture part. The aggregated
FM resulting from the combination of different variability
sources and the bidirectional mapping contains 92 features

and 158 cross-tree constraints (CTCR2=84%). The slicing
technique significantly reduced the over approximation of
the original architectural FM (from ≈ 1011 to ≈ 106).

Variability in video surveillance. In the development of
a video surveillance SPL, we represented the variability of
the context and the variability of the software platform as
two separated FMs [6]. 77 features and 108 configurations
were present in the context FM while 51 features and 106

configurations were present in the software platform FM.
The relationships between the two FMs were described as
39 rules (propositional constraints) relating features across
models. Then, in line with specific requirements, we step-
wise specialized the FM representing the context by remov-
ing some features, by modifying some feature groups, etc.
After the specialization of the context FM, we needed to up-
date the software platform FM. To do so, we aggregated the
specialized context FM and the software platform FM to-
gether with rules. We used the slice operator on the aggre-
gated FM by only including the set of features related to the
software platform. We observed that from a specification of
a context, the possible configurations in the software plat-
form can be highly reduced. We applied the techniques on
different scenarios: the average number of features to con-

2 CTCR is the ratio of the number of features in the constraints to the
number of features in the feature hierarchy.

GPU

MIService

Library Required

Matlab

Analyze excludes CT

Interactive

Model

PAM

MI Algorithm

Method

Format

Name

Nifti Analyze

ModalityAcquisition

CTMRI

T2

PET

Medical Image

fmViewMI

(a) Medical Image expert view

TransferProtocol

HTTPS HTTP

Header

Encoding

NetworkProtocol

Crypto

NetworkSecurity

SSLPGP

Asymetric Symetric

DES TripleDES KDC

Anonymized implies HeaderEncoding

HeaderEncoding implies HTTPS

SSL ó SSLAuth

Kerberos implies KDC

MetaData

Anonymized

MIService

Authentification

SSLAuthPasswordKerberos

fmViewSecurity

(b) Security expert view

Figure 7. Another decomposition strategy and set of FM views

6 2012/3/2

sider in the software platform FM was less than 104 (instead
of 106 configurations).

4.3 Reconciling Feature Models
When managing a set of FMs, the different stakeholders in-
volved in the SPL development may have to put together
very similar variability information but with a different
structure. For example, in the medical imaging domain, dif-
ferent suppliers (scientists, research teams, companies, etc.)
provide imaging services and may use different hierarchies,
concepts, vocabulary, etc. when elaborating the FMs.

4.3.1 Technique and example
Let us consider two FMs, fmMI1 and fmMI2, in Fig-
ure 8. The two FMs differ. In particular, features Open, Pro-
prietary, NiftiI, NiftiII are present in fmMI1 but not in
fmMI2. Intuitively, more structure and details are mod-
eled in fmMI1. As a result, a comparison (see Defini-
tion 3) or a merging (see Section 3.2) of the two FMs leads
to counter intuitive results, i.e., the intersection of the two
configuration sets is empty (see line 4 and 5 of the FAMILIAR

script below). Looking at the two FMs, some configurations
seem to correspond, for example, the valid configuration
{MedicalImage,DICOM} of fmMI2 with the configura-
tion {MedicalImage,Open,DICOM} of fmMI1. We thus
need to reconcile (or align) the two FMs and allow an SPL
practitioner to align in a coherent way information from
fmMI1 and fmMI2.

DEFINITION 3 (Kind of edits and Comparison). Let f and g
be two FMs. f is a specialization of g if JfK ⊂ JgK. f is
a generalization of g if JgK ⊂ JfK. f is a refactoring of
g if JgK = JfK. f is an arbitrary edit of g if f is neither
a specialization, a generalization nor a refactoring of g. A
comparison computes the relationship between two FMs.

fmMI1

fmMI2

MedicalImage

Nifti DICOM SPI

fmMI3

MedicalImage

Nifti DICOM SPI

∩

Π MedicalImage, Nifti, DICOM, SPI, GE (fmMI1)

fmMI1Sliced

MedicalImage

Nifti DICOM SPI GE

1

2

MedicalImage

Open Proprietary

Nifti DICOM SPI GE

NiftiI NiftiII

Figure 8. Slicing (À) to reconcile FMs and allow, e.g.,
comparison or merging (Á)

Using the slice operator, we simply remove features of
fmMI1 i) that structure the feature model (i.e., features
Open, Proprietary) and ii) that can be abstracted by a single

feature (i.e., Nifti abstracts features NiftiI and NiftiII). Then,
the comparison can be computed or the merge operator can
be used as in Figure 8.

4.3.2 Practical application
Besides the medical imaging domain, we also used the tech-
niques described above for the reverse engineering of FraS-
CAti architectural FM. The architectural FM resulting from
the automatic extraction (see Section 4.2.3) was compared
with another architectural FM, this time manually designed
by the software architect (SA) of FraSCAti. Unfortunately,
the direct comparison yields to unexploitable results, mainly
due to the difference of granularity (i.e., some features in
one FM are not present in the other). Basic manual edits of
FMs were unpractical as we needed to safely remove fea-
tures involved in several constraints or that were in the mid-
dle of the hierarchy. The slicing operator was extensively ap-
plied to remove unnecessary details in both FMs. Once the
FMs have been reconciled, the two FMs can be compared
so that the differences between them can be identified. This
encourages the SA to correct his initial model [3].

4.4 Reasoning about Two Kinds of Variability
In SPL engineering, two kinds of variability are usually dis-
tinguished [22, 23]: software (or internal) variability, hidden
from customers, as opposed to product line (PL) (or exter-
nal) variability, visible to them. Software variability and PL
variability can be seen as two concerns of an SPL. Metzger
et al. proposed a formal and concise approach for separat-
ing PL variability and software variability and enabling au-
tomatic analysis [22]. The two concerns are modeled as two
FMs and inter-related by constraints. The authors mention
several properties that should be checked when reasoning
about the two kinds of variability. We now revisit here the
approach defended in [22] and show how the operators can
be combined to support SoC in this context.

4.4.1 Realized-by property
An important property of an SPL is realizability, i.e., whether
the set of products that the PL management decides to of-
fer is fully covered by the set of products that the software
platform allows building. In Figure 9, we want to ensure that
for each valid selection/deselection of features of fmPL per-
formed by a customer, there exists at least one corresponding
software product described by fmsoftware. The PL vari-
ability is documented using fmPL, the software variability
is documented using another FM (see fmsoftware) and the
two FMs are related through constraints (see mapSoftPL).
Note that the mapping between features of fmPL and
fmsoftware is not necessarily one-to-one. To this end we
first reason about the relationship between fmsoftware and
fmPL. We compute fmG, the aggregation of fmPL and
fmsoftware and add the constraints mapSoftPL.

In terms of FMs, the realizability property can be for-
mally expressed (FPL the set of features of fmPL):

∀cp ∈ JfmPLK, cp ∈ JΠFPL
(fmG)K (1)

7 2012/3/2

Online Store

Debit Card

Payment
Payment

Upon Voice

fmSoftware

Check of

Credit History

Credit Card

Payment

Online Store

Debit Card

Payment
Payment

Upon Voice

fmPL

Check of Credit

History

V2 => V3

V1 ó f1

V2 ó f2

V3 ó f3

f2f1

V1 V2 V3

f3 f4

r

VP1

Figure 9. Software and PL Variability (adapted from [22])

Intuitively, if the restriction of the PL features to JfmGK is
equivalent to the original JfmPLK, the constraintsmapSoftPL

has no effect on the PL part of fmG and thus the realizability
property holds. Otherwise some products cannot be realized
in the platform. Equation 1 implies to check if fmPL is a
refactoring (see Definition 3) of ΠFPL

(fmG). Using the ag-
gregate, slice and merge diff operators, we can automatically
check this property. First, we slice the aggregated FM fmG

by only including FPL, the set of features of fmPL. The
slice produces a new FM, denoted fmPLPrime

. Formally:
fmPLPrime

= ΠFPL
(fmG)

Then, we compare the resulting FM, fmPLPrime
, with

the original PL model, fmPL. If fmPLPrime
is not a

refactoring of fmPL, the realizability property is vio-
lated since some existing products of fmPL are removed
in fmPLPrime

and no product is added. Finally, we can
compute the set of products that are in fmPL but not in
fmPLPrime

using the merge operator in diff mode. The
merge operator produces fmPLDiff .

Back to the example of Figure 9, we obtain that the
realizability property does not hold and that three products
proposed to customers cannot be realized by the platform:

JfmPL ⊕\ fmPLPrimeK = JfmPLDiff K =

{{V 1, V 3, V 2, V P1}, {V 1, V P1}, {V 3, V P1}}
Only the following two products can be realized:
JfmPL ⊕∩ fmPLPrimeK = JfmPLInterK =

{{V 1, V 3, V P1}, {V 2, V 3, V P1}}

4.4.2 Non useful products
A product is useful if it is a possible realization of a PL mem-
ber. As argued in [22], the list of non-useful products is a
symptom of unused flexibility of the software platform. It
can be on purpose, for example, justified by future market-
ing extensions. The usefulness property can be seen as the
"symmetric" of the realized-by property. Formally, all prod-
ucts are useful if the following relation holds:

∀cp ∈ JfmsoftwareK, cp ∈ JΠFsoftware
(fmG)K

Hence, similar techniques involving aggregate, slice and
merge can be used to check the property.

4.4.3 Practical applications
Reasoning about two concerns. We apply the techniques us-
ing the larger example described in [22]. We successfully
retrieved the same results, but our approach is more efficient
since we do not enumerate configurations/products as they
do. Moreover, high-level operators (slice, aggregate, com-
pare, merge) facilitate the reasoning realization and offer a
systematic solution for SPL practitioners when understand-
ing and maintaining the two FMs. It should be noted that the
technique for updating views (see Section 6) can be applied
in such contexts, for example, to remove dead features in the
PL or software model.

Reasoning about variability properties. In the develop-
ment of video surveillance systems, a key issue is to ensure
that, given a valid configuration of the context, a software
configuration can always be obtained. This property is simi-
lar to the realized-by property and can be checked using the
same techniques. We successfully scale for this case study,
whereas it was clearly not the case with the enumerative
technique proposed in [22].

5. Towards Scalable Technique to Separate
Concerns

Central to the support for SoC in feature modeling is the
ability to decompose (i.e., slice) FMs. All applications de-
scribed in the previous section make extensive use of the
slicing technique. It is thus crucial to provide a scalable im-
plementation of the slice operator. A syntactical technique
is not adequate, especially in the presence of cross-tree con-
straints. A technique based on the enumeration of configu-
rations is not scalable, since the number of configurations is
exponential to the number of features. To avoid these lim-
itations, we developed a dedicated technique that consists
in first computing the propositional formula representing the
projected (see Section 3.3) set of configurations. The compu-
tation of the propositional formula is essential for reasoning
about the projected set of configurations but also for synthe-
sizing the FM. As detailed in [4], propositional logic tech-
niques [12, 29] can be applied to construct an FM (includ-
ing its hierarchy, variability information and cross-tree con-
straints) from the formula. In this section, we focus on the
computation of the propositional formula. We report on the
practical limits of an implementation based on binary deci-
sion diagrams (BDDs). We describe a symbolic technique
that outperforms a BDD-based implementation and that can
efficiently decompose FMs with thousands of features.
Propositional Formula Encoding. First, we describe the
encoding of the projected set of configurations as proposi-
tional formula For a slicingFMslice = Πft1,ft2,...,ftn (FM),
the propositional formula φslice corresponding to FMslice

can be defined as follows:
φslice ≡ ∃ ftx1, ftx2, . . . ftxm′ φ

where ftx1, ftx2, . . . ftxm′ ∈ (F \ Fslice) = Fremoved.
Intuitively, all occurrences of features that are not present

in any configuration of FMslice are removed by existential

8 2012/3/2

quantification in φ. φslice is obtained from φ by existentially
quantifying out variables in Fremoved.

DEFINITION 4 (Existential Quantification). Let v be a Boolean
variable occurring in φ. φ|v (resp. φ|v̄) is φ where variable
v is assigned the value True (resp. False). Existential quan-
tification is then defined as ∃v φ =def φ|v ∨ φ|v̄ .

5.1 BDD-based Implementation
In previous work [4], we rely on BDDs [11] to compute the
propositional formula. A BDD is a compact representation
of a Boolean function (e.g., a propositional formula). BDDs
can be efficiently used to compute the propositional formula
described above since computing the existential quantifica-
tion can be performed in at most polynomial time with re-
spect to the sizes of the BDDs involved [11]. Furthermore,
BDDs can be used to synthesize an FM in polynomial time
regarding the size of the BDD representing the input propo-
sitional formula [12]. A major drawback of BDDs is that
finding an optimal variable ordering during BDD construc-
tion is NP-hard [11]. Some heuristics have been developed
and successfully compile FMs to BDDs for a number of fea-
tures up to 2000 [20].

The goal of our experiment was to determine the scal-
ability of the BDD-based implementation w.r.t. the size of
the input FMs (i.e., number of features) and the size of the
slicing criterion (i.e., number of features to include). For the
experiment, we reuse the heuristics (i.e., Pre-CL-MinSpan)
developed in [20] to reduce the size of BDDs. For a first
evaluation, we used several small and medium-sized FMs
that were publicly available from SPLOT [21] repository as
well as FMs from our case studies. We performed our ex-
periments on more than 100 FMs, the bigger one having
290 features. We found that computing the slice is almost
instantaneous in all cases. To go further, we randomly gen-
erated FMs with several hundreds of features. We varied i)
the number of features, noted #features, from 100 to 2000
features (the known practical limits of BDD) ; ii) CTCR
from 10% to 100%. We used the publicly available proce-
dure described in [21] to randomly generate the FMs. In each
generated model, each type of mandatory, optional, Xor and
Or-groups was added with equal probability. For each FM,
we randomly generated a slicing criterion. We varied the
percentage of features to slice between 100% (no existen-
tial quantification is performed) and 1% (almost all features
are existentially quantified). The main results show that:
• The synthesis of the feature diagram has practical lim-

its (up to 800 features3). This limit also applies in our
context. We observed that the slicing technique can scale
even for an FM with 2000 features if the percentage of
features to slice is ≤ 35%. The reason is that the size of
a BDD will always be smaller or at least unchanged after
existential quantification ;

3 Janota et al. reported that the BDD-based algorithm proposed in [12]
scales up only for FMs with 300/400 features [18], but did not use the
heuristics proposed in [20]

• The primary limit of the BDD-based implementation lies
in the difficulties to construct BDD from the original FM.
In particular, the total number of features in the input
FM should not be more than 2000 features, otherwise
it is impossible to having a BDD-representation of the
formula. It should be noted that whenever an FM can be
represented as a BDD, φslice can be computed. Hence
the encoding of φslice can scale up to 2000 features with
a CTCR of 10, whatever the slicing criterion is ;

5.2 SAT-based Implementation
She et al. proposed techniques to reverse engineer very large
FMs (i.e., with more than 5000 features) [29]. As shown
above BDDs do not scale for this order of complexity and
therefore the slicing operator cannot process such FMs. She
et al. adapted their previous techniques and now rely on
satisfiability (SAT) solvers (rather than BDDs as in [12]).
They reported that the use of SAT solvers is significantly
more scalable. Hence a SAT-based implementation of slicing
is an interesting perspective that motivates our work.

We identify two main issues. First, the size of the for-
mula exponentially increases when existential quantification
is performed many times, i.e., the number of clauses dou-
bles at each iteration. It may become an issue when the size
of Fremoved is important, even for small FMs. Second, SAT
solvers require a formula to be in conjunctive normal form
(CNF). It is straightforward to translate the propositional for-
mula of an FM into CNF. However, when existential quan-
tification is performed, the resulting formula is not in CNF
(see Definition 4). To tackle the first issue, we substitue each
feature of Fremoved only in those clauses that contain the
feature. More formally, let ft be a feature of Fremoved, φ a
formula in CNF decomposed as follows:
φ = p(ft, φ) ∧ c(ft, φ) where c(ft, φ) denotes the

conjunction of the clauses that do not contain the feature ft
and p(ft, φ) denotes the conjunction of the clauses that do
contain the feature ft. The existential quantification of ft in
φ produces a new formula φ′ defined as follows:
φ′ = φ|ft

∨ φ|f̄t
= (p(ft, φ)|ft

∨ p(ft, φ)f̄ t)∧ c(ft, φ)
Example. We consider fm1 of Figure 1a (see page 3).

We slice fm1 using as slicing criterion all features except
T and V (i.e., Fremoved = {T, V }). It should be noted that
the existential quantification of T and V can performed in
any order. In this example, we first perform the existential
quantification of T, producing the following propositional
formula: φ′fm1

= ((W ⇔ True ∧ V ⇒ True ∧ A ⇔
True) ∨ (W ⇔ False ∧ V ⇒ False ∧ A ⇔ False)) ∧
c(V, φ) ∧ True ∧ ¬False.

Then we iterate by performing the existential quantifica-
tion of V in φ′fm1

. We can observe that at each iteration the
formula can be symbolically simplified in many ways. For
instance, T cannot be evaluated to False in φ′fm1

and there-
fore the disjunctive clause can be removed. We can also ob-
serve that A ⇔ True ≡ True but we do not consider this
kind of simplification since features included in the slicing
criterion, like A, must not be removed. However we can sim-

9 2012/3/2

plify φ′fm1
considering that V ⇒ True ≡ True since V is

included in the slicing criterion. An additional optimisation,
related to symbolic simplification, is the order in which the
features are existentially quantified. Indeed, we observe that
some features are likely to be simplified. We use an heuristic
that existentially quantifies in priority features that are at the
bottom of the feature hierarchy. To tackle the second issue,
we transform the resulting propositional formula into CNF
at each iteration (i.e., for each existential quantification of a
feature ft). It should be noted that we only need to consider
the transformation of (p(ft, φ)|ft

∨ p(ft, φ)f̄ t) into CNF
since c(ft, φ) is already in CNF.

Generated FMs. For the evaluation of the technique, we
used the same FMs as with the experiments conducted for
the BDD-based implementation. We also generated FMs
with 2000 ≥ #features ≥ 10000 with the same param-
eters as previously described (10000 features is the prac-
tical limit admitted in the literature [10, 21, 32]). We first
verified that the techniques described above are necessary
since a naive substitution strategy that does not compute
c(ft, φ) is not scalable (scalability issues are observed for
#features ≥ 50). Using our technique, we found that:
i) computing the propositional formula is almost instanta-
neous for all FMs of SPLOT (less than one second, what-
ever the size of the slicing criterion is); ii) the SAT-based
implementation scales for #features ≤ 10000 whatever
the size of the slicing criterion is; iii) the order in which
the features are existentially quantified is of prior impor-
tance: we begin to observe scalability issues when quan-
tifying first the features that are in top of the feature hi-
erarchy for #features ≥ 2000 ; iv) for very large FMs
(#features ≥ 5000), the computation time is inadequate
for an interactive use of the slice operator (up to 20 minutes).

Real world FMs. As stated early, automated extraction
techniques now produce very large FMs from existing soft-
ware systems. We applied our technique to three inde-
pendent systems relating to the operating system domain
(Linux, eCos, and FreeBSD). Linux and eCos have FMs
whereas FreeBSD has not. She et al. reverse engineer the
propositional formula of FreeBSD and develop techniques
to interactively specify the hierarchy [29]. For the experi-
ment, we directly applied the slicing technique on the for-
mula of FreeBSD. It should be noted that, in this specific
case, we cannot use the heuristic mentioned above since
we do not have access to the hierarchy of FreeBSD. We ran-
domly generated the order in which features are existentially
quantified. The technique succeeded almost instantaneously
(FreeBSD has 1203 features). We also succeeded on eCos
that has over 1200 features.

Finally, we applied our technique to the FM of Linux
which exhibits 6300 features. Contrary to the results ob-
tained from the two other operating systems or from the
experimental study described above, we scaled only for
less than 60% of features included in the slicing criterion
(whereas this percentage drops to 1% in the other cases). In
order to understand the reasons of this limitation, we need to

compare the experimental conditions of the generated FMs
with the properties of the Linux FM. The Linux model con-
tains very small percentages of mandatory features (5%),
grouped features (3%) – Linux features are mostly op-
tional (92%). whereas in each generated model, each type
of mandatory, optional, Xor and Or-groups was added with
equal probability (25%). We can make the assumption that
the slice operator is dependent on certain shapes of FMs,
and/or certain kinds of constraints. We need to understand
the impact of FM properties regarding the scalability of the
slice operator. As future work, we plan to characterize more
precisely the lack of scalability w.r.t. the Linux FM and de-
velop new heuristics or specific techniques.

6. Comparison with Other Solutions
We now review existing approaches that have been devel-
oped to support SoC in FMs. We point out their relations
to the SoC techniques that have been identified (see Fig-
ure 4) and illustrated by different case studies in Section 4.
To this end, we rely on the numbers used in Figure 3, each
corresponding to a case study. The general conclusion is that
without the new capabilities brought by our solution (i.e., the
combined use of composition and decomposition operators),
some analysis and reasoning operations would not be made
possible in the different case studies.

Composition. A few works consider some forms of com-
position for FMs and suggest the use of a merge opera-
tor [7, 15, 27, 28]. An in-depth comparison of implemen-
tation approaches is performed in [2]. Our proposal goes
further since we clarified the semantics of the merge and
showed that the merge alone is not sufficient to realize com-
plex management tasks in the case studies À and Â. It
rather has to be combined with decomposition and reason-
ing mechanisms. Several approaches use several and inter-
related FMs and views [15, 19, 22, 24, 35]. As shown, the
aggregate operator combined with the slice can be used in
such contexts to update the different views, to support multi-
ple perspectives or to reason about properties of the FMs (see
case studies À, Á, Â and Ã). In [26], the authors tackled the
problem of mapping problem-space features into solution-
space features and proposed to use default logic. Our con-
tributions rely on propositional logics and therefore are not
applicable to this work. Thompson et al. proposed to specify
a product family from n perspectives: one family-hierarchy
per view such as software or hardware [31]. It is a form of
SoC that is particularly needed in the case studies À or Á. A
set-theoretic foundation is proposed: it can be expressed and
realized using FMs and the presented techniques.

Decomposition. Thüm et al. [32] presented an automated
and scalable technique to characterize the kinds of edit be-
tween two FMs. An original property of the technique is
that they distinguish abstract features from concrete features
when reasoning. Abstract features are, in their work, non-
leaf features. We consider this is the role of an SPL prac-
titioner to explicitly determine which features are abstract

10 2012/3/2

(as shown in the example of Section 4.3, abstract features
are not necessary non-leaf features). Our technique is thus
more general and realize the vision of [27] that makes the
distinction between features that are of interest per se (i.e.,
that will influence the final product) and others. As we have
shown, reasoning about the relationship of two FMs (and
thus using the comparison operator developed in [32]) is
inappropriate until FMs are not reconciled (see case stud-
ies À and Ã). From our experience, tool supported tech-
niques, such as the safe removal of a feature by slicing,
are not desirable but mandatory (i.e., basic manual edits of
FMs are not sufficient) in this context. Recently, Thüm et
al. [33] extend the work described in [32] and propose to
make abstract features explicit in FMs. They show how a
propositional formula can be retrieved describing the set of
distinct "program variants", corresponding to combination
of concrete features. Interestingly, Thüm et al. plan to ap-
ply their techniques to SPL testing. We see this work as
an application of the slicing technique where all features
but abstract features are part of the slicing criterion. Our
technique for computing the propositional formula is sim-
ilar to the technique described in [33]. In addition we de-
veloped an heuristic that determines the order in which the
features are existentially quantified. We also applied to very
large FMs and reported scalability results. In the context of
feature-based configuration, techniques have been proposed
to separate the configuration process in different steps or
stages [13]. Our work is complementary since we propose
techniques to decompose FMs. Hubaux et al. provide view
mechanisms to decompose a large FM [17]. However they
do not propose a comprehensive solution when dealing with
cross-tree constraints. Furthermore we have shown that the
decomposition of FMs has several other interesting applica-
tions beyond the support of multiple perspectives (see case
studies À, Á, Â and Ã). Benavides et al. survey the liter-
ature of automated reasoning about FMs [10]. To the best
of our knowledge, there is no existing work for correcting
anomalies in FMs. Furthermore, existing approaches men-
tioned in [10] and discussed above either focus on composi-
tion or decomposition, but they do not try to combine the
two mechanisms for supporting SoC in feature modeling.
The "tyranny of the dominant decomposition” is a general
issue for aspect-oriented approaches [30]. In [9], Batory et
al. introduced multi-dimensional SoC where a dimension is
a set of features addressing a particular concern. We can see
a dimension as a slicing criterion. The approach of Batory
et al. does not generate views but rather composes features
along each dimension. It is thus complementary and can be
used to produce parts of a system, being services (case study
À), components (case study Á) or plugins (case study Ã).
Rosenmüller et al. develop compositional support to manage
different FMs, each focusing on a specific dimension [25].
They do not consider composition of FMs that introduce
anomalies and do not propose automated decomposition (as
needed in all case studies).

7. Threats to Validity
Threats to external validity are conditions that limit our abil-
ity to generalize the results of our operators and experiment
to industrial practice. Our first concern is whether generated
FMs or Linux FM used in the experiments (see Section 5)
are representative of industrial usage. Our second concern
is whether the composition and decomposition operators are
expressive and intuitive enough to support activities of SPL
practitioners. As summarized by Figure 4 and Figure 3, the
operators have been applied to different domains for differ-
ent purposes and by different people (external to our team).
Moreover we identify several works in the literature that can
benefit from the techniques (see Section 6).

A first internal threat concerns the correctness of the oper-
ators implementation. In particular, the slice operator is sup-
posed to guarantee that some semantic properties are pre-
served. Our implementation is currently checked by a com-
prehensive set of unit tests, complemented by cross-checked
testing with other operations. For instance, we compared the
formulas produced by the BDD-based and SAT-based im-
plementation of the slice operator. We also manually veri-
fied a large number of slice examples. Besides we observed
that randomly generated FMs may contain a lot of anoma-
lies (e.g., dead features or wrong feature group). We used
this opportunity to gain further confidence in our implemen-
tation and applied our slicing technique to automatically cor-
rect anomalies in generated FMs (see Section 4.1). We au-
tomatically checked that the original FM and the slice (i.e.,
corrected) FM were equivalent in terms of sets of configu-
rations, that the slice FM did not contain any anomaly, and
that the hierarchy conforms to the original FM.

8. Conclusion
In this paper, we described how a set of complementary op-
erators (aggregate, merge, slice) can be used to provide a
powerful support for SoC in feature modeling. We showed
how the operators can assist in tedious and error prone tasks
such as automated correction of FM anomalies, update and
extraction of FM views, reconciliation of FMs or reasoning
about properties of FMs. The operators bring new capabil-
ities to the FM users for supporting SoC in feature model-
ing and when we revisited and reimplemented existing ap-
proaches with them, we observed a better scalability. Both
these new capabilities and scalability results enabled us to
apply SoC in feature modeling to different domains (medi-
cal imaging, video surveillance) and for different purposes
(scientific workflow design, variability modeling of context
and software platform, reverse engineering). We also devel-
oped a technique to implement the slice operator that scales
up to FMs with 10000 features in certain conditions. As fu-
ture work, we plan to study practical usage and applicability
of the proposed techniques.

Acknowledgments. Dr. Acher’s work is supported by
the IAP Programme, the Belgian Science Policy under the
MoVES project, the FNRS, and an FSR grant, co-funded by
Marie-Curie actions of the European Commission.

11 2012/3/2

References
[1] M. Acher. Managing Multiple Feature Models: Foundations,

Language and Applications. PhD thesis, 2011.

[2] M. Acher, P. Collet, P. Lahire, and R. France. Compar-
ing approaches to implement feature model composition. In
ECMFA’10, volume 6138 of LNCS, pages 3–19, 2010.

[3] M. Acher, A. Cleve, P. Collet, P. Merle, L. Duchien, and
P. Lahire. Reverse engineering architectural feature models.
In ECSA’11, volume 6903 of LNCS, pages 220–235, 2011.

[4] M. Acher, P. Collet, P. Lahire, and R. France. Slicing feature
models. In ASE’11, pages 424–427. IEEE, 2011.

[5] M. Acher, P. Collet, P. Lahire, A. Gaignard, R. France, and
J. Montagnat. Composing multiple variability artifacts to as-
semble coherent workflows. Software Quality Journal (Spe-
cial issue on Quality Engineering for SPLs), 2011.

[6] M. Acher, P. Collet, P. Lahire, S. Moisan, and J.-P. Rigault.
Modeling variability from requirements to runtime. In
ICECCS’11, pages 77–86. IEEE, 2011.

[7] V. Alves, R. Gheyi, T. Massoni, U. Kulesza, P. Borba, and
C. Lucena. Refactoring product lines. In GPCE’06, pages
201–210. ACM, 2006.

[8] S. Apel and C. Kästner. An overview of feature-oriented
software development. Journal of Object Technology (JOT),
8(5):49–84, July/August 2009.

[9] D. Batory, J. Liu, and J. N. Sarvela. Refinements and multi-
dimensional separation of concerns. SIGSOFT Softw. Eng.
Notes, 28:48–57, 2003.

[10] D. Benavides, S. Segura, and A. Ruiz-Cortes. Automated
analysis of feature models 20 years later: a literature review.
Information Systems, 35(6), 2010.

[11] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient imple-
mentation of a bdd package. In DAC ’90: Design Automation
Conference, pages 40–45. ACM, 1990.

[12] K. Czarnecki and A. Wasowski. Feature diagrams and logics:
There and back again. In SPLC’07, pages 23–34. IEEE, 2007.

[13] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged config-
uration through specialization and multilevel configuration of
feature models. Software Process: Improvement and Practice,
10(2):143–169, 2005.

[14] D. Dhungana, P. Grünbacher, R. Rabiser, and T. Neumayer.
Structuring the modeling space and supporting evolution in
software product line engineering. Journal of Systems and
Software, 83(7):1108–1122, 2010.

[15] H. Hartmann and T. Trew. Using feature diagrams with con-
text variability to model multiple product lines for software
supply chains. In SPLC’08, pages 12–21. IEEE, 2008.

[16] H. Hartmann, T. Trew, and A. Matsinger. Supplier indepen-
dent feature modelling. In SPLC’09, pages 191–200. IEEE,
2009.

[17] A. Hubaux, P. Heymans, P.-Y. Schobbens, D. Deridder, and
E. Abbasi. Supporting multiple perspectives in feature-based
configuration. Software and Systems Modeling, pages 1–23.

[18] M. Janota, V. Kuzina, and A. Wasowski. Model construction
with external constraints: An interactive journey from seman-
tics to syntax. In MODELS’08, volume 5301 of LNCS, pages
431–445, 2008.

[19] K. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh.
Form: A feature-oriented reuse method with domain-specific
reference architectures. Annals of Software Engineering, 5(1):
143–168, 1998.

[20] M. Mendonca, A. Wasowski, K. Czarnecki, and D. Cowan.
Efficient compilation techniques for large scale feature mod-
els. In GPCE’08, pages 13–22. ACM, 2008.

[21] M. Mendonca, A. Wąsowski, and K. Czarnecki. SAT-based
analysis of feature models is easy. In SPLC’09, pages 231–
240. IEEE, 2009.

[22] A. Metzger, K. Pohl, P. Heymans, P.-Y. Schobbens, and
G. Saval. Disambiguating the documentation of variability in
software product lines: A separation of concerns, formaliza-
tion and automated analysis. In RE’07, pages 243–253, 2007.

[23] K. Pohl, G. Böckle, and F. J. van der Linden. Software Product
Line Engineering: Foundations, Principles and Techniques.
Springer-Verlag, 2005. ISBN 3540243720.

[24] M.-O. Reiser and M. Weber. Multi-level feature trees: A prag-
matic approach to managing highly complex product families.
Requir. Eng., 12(2):57–75, 2007.

[25] M. Rosenmüller, N. Siegmund, T. Thüm, and G. Saake. Multi-
dimensional variability modeling. In VaMoS’11, pages 11–20.
ACM, 2011.

[26] F. Sanen, E. Truyen, and W. Joosen. Mapping problem-space
to solution-space features: a feature interaction approach. In
GPCE ’09, pages 167–176. ACM, 2009.

[27] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, and Y. Bontemps.
Generic semantics of feature diagrams. Comput. Netw., 51(2):
456–479, 2007.

[28] S. Segura, D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Au-
tomated merging of feature models using graph transforma-
tions. In GTTSE ’07, volume 5235 of LNCS, pages 489–505,
2008.

[29] S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki.
Reverse engineering feature models. In ICSE’11, pages 461–
470. ACM, 2011.

[30] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, Jr. N degrees
of separation: multi-dimensional separation of concerns. In
ICSE’99, pages 107–119. ACM, 1999.

[31] J. M. Thompson and M. P. E. Heimdahl. Structuring product
family requirements for n-dimensional and hierarchical prod-
uct lines. Requirements Engineering, 8(1):42–54, 2003.

[32] T. Thüm, D. Batory, and C. Kästner. Reasoning about edits to
feature models. In ICSE’09, pages 254–264. ACM, 2009.

[33] T. Thüm, C. Kästner, S. Erdweg, and N. Siegmund. Abstract
features in feature modeling. In SPLC’11, pages 191–200.
IEEE, Aug. 2011.

[34] T. T. Tun and P. Heymans. Concerns and their separation in
feature diagram languages - an informal survey. In Interna-
tional workshop SCALE@SPLC’09, pages 107–110, 2009.

[35] T. T. Tun, Q. Boucher, A. Classen, A. Hubaux, and P. Hey-
mans. Relating requirements and feature configurations: A
systematic approach. In SPLC’09, pages 201–210. IEEE,
2009.

[36] M. Weiser. Program slicing. In ICSE ’81, pages 439–449.
IEEE, 1981.

12 2012/3/2

	Introduction
	Background: Feature Models
	Composition and Decomposition Support
	Aggregate
	Merge
	Slice Operator

	Applying Separation of Concerns
	Corrective Capabilities
	Managing Different FM Views
	Updating FM views
	Supporting multiple perspectives
	Practical applications

	Reconciling Feature Models
	Technique and example
	Practical application

	Reasoning about Two Kinds of Variability
	Realized-by property
	Non useful products
	Practical applications

	Towards Scalable Technique to Separate Concerns
	BDD-based Implementation
	SAT-based Implementation

	Comparison with Other Solutions
	Threats to Validity
	Conclusion

