17,688 research outputs found

    Believing Probabilistic Contents: On the Expressive Power and Coherence of Sets of Sets of Probabilities

    Get PDF
    Moss (2018) argues that rational agents are best thought of not as having degrees of belief in various propositions but as having beliefs in probabilistic contents, or probabilistic beliefs. Probabilistic contents are sets of probability functions. Probabilistic belief states, in turn, are modeled by sets of probabilistic contents, or sets of sets of probability functions. We argue that this Mossean framework is of considerable interest quite independently of its role in Moss’ account of probabilistic knowledge or her semantics for epistemic modals and probability operators. It is an extremely general model of uncertainty. Indeed, it is at least as general and expressively powerful as every other current imprecise probability framework, including lower probabilities, lower previsions, sets of probabilities, sets of desirable gambles, and choice functions. In addition, we partially answer an important question that Moss leaves open, viz., why should rational agents have consistent probabilistic beliefs? We show that an important subclass of Mossean believers avoid Dutch bookability iff they have consistent probabilistic beliefs

    Connecting two theories of imprecise probability

    Get PDF

    Sets of Priors Reflecting Prior-Data Conflict and Agreement

    Full text link
    In Bayesian statistics, the choice of prior distribution is often debatable, especially if prior knowledge is limited or data are scarce. In imprecise probability, sets of priors are used to accurately model and reflect prior knowledge. This has the advantage that prior-data conflict sensitivity can be modelled: Ranges of posterior inferences should be larger when prior and data are in conflict. We propose a new method for generating prior sets which, in addition to prior-data conflict sensitivity, allows to reflect strong prior-data agreement by decreased posterior imprecision.Comment: 12 pages, 6 figures, In: Paulo Joao Carvalho et al. (eds.), IPMU 2016: Proceedings of the 16th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, Eindhoven, The Netherland

    The CONEstrip algorithm

    Get PDF
    Uncertainty models such as sets of desirable gambles and (conditional) lower previsions can be represented as convex cones. Checking the consistency of and drawing inferences from such models requires solving feasibility and optimization problems. We consider finitely generated such models. For closed cones, we can use linear programming; for conditional lower prevision-based cones, there is an efficient algorithm using an iteration of linear programs. We present an efficient algorithm for general cones that also uses an iteration of linear programs
    • 

    corecore