
The CONEstrip Algorithm

Erik Quaeghebeur1

Abstract Uncertainty models such as sets of desirable gambles and (conditional)
lower previsions can be represented as convex cones. Checking the consistency of and
drawing inferences from such models requires solving feasibility and optimization
problems. We consider finitely generated such models. For closed cones, we can use
linear programming; for conditional lower prevision-based cones, there is an efficient
algorithm using an iteration of linear programs. We present an efficient algorithm for
general cones that also uses an iteration of linear programs.

Key words: convex cones, consistency, feasibility, inference, linear programming

1 Introduction

Mathematically speaking, frameworks for modeling uncertainty consist of rules that
specify what constitutes a within the framework valid model and rules to perform
computations with such models. For a number of frameworks under the imprecise
probability umbrella [8, 9], checking validity—i.e., the consistency criteria of avoid-
ing sure & partial loss and coherence—and calculating an inference—i.e., natural
extension—involves solving feasibility and optimization problems.

We illustrate in Section 2 that the feasibility aspect of these problems essentially
boils down to checking whether some vector lies in a general convex cone, called
general cone from now on, a cone that may be closed, open, or ajar, i.e., neither open
nor closed. For models specified in a finitary way, algorithms to do this for closed
and specific general cases can be found in the literature. In Section 4 we present an
efficient algorithm for all general finitary instances. But to do this, we first need to
make a small detour with Section 3 to discuss how we can represent finitary general
cones—and therefore the feasibility and optimization problems that interest us—in a
way that is conducive to algorithm formulation.

1SYSTeMS Research Group, Ghent University, Belgium Erik.Quaeghebeur@UGent.be

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55731237?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:Erik.Quaeghebeur@UGent.be

2 Erik Quaeghebeur

Concepts & Notation. We assume that the possibility space Ω is non-empty and
finite. Gambles are real-valued functions on Ω , i.e., elements of L ∶= [Ω →R]. The
indicator 1B of an event B ⊆Ω is 1 on B and 0 elsewhere; 1ω ∶= 1

{ω} for ω ∈Ω . The
finite subset relation is ⋐. A set superscripted with ‘∗’ denotes the set of all its finite
subsets. Vector inequalities: ⋗ (≥) is pointwise (non-)strict; > means “≥ but not =”.

2 Problems Solved in the Literature

In this section, we present a number of problems from and solved in the literature.
On the one hand, they are meant to make a link with the literature, and on the other
hand, we use them to illustrate that these problems essentially boil down to checking
whether some vector lies in a cone.

Lower Previsions and Sets of Almost-Desirable Gambles. The most basic consis-
tency criterion for lower previsions and sets of almost desirable gambles is avoiding
sure loss [8, §2.4 & §3.7.1]. Checking whether a lower prevision P ∈ [K→R], with
K ⋐L, or set of almost desirable gambles A⋐L incurs sure loss amounts to solving
the feasibility problem below, where in the former case A ∶= {h−Ph ∶ h ∈ K}:

find λ ∈RA,
subject to ∑g∈Aλg ⋅g ⋖ 0 and λ ≥ 0.

We can get an equivalent feasibility problem that can however be solved using linear
programming [10, §2.4] by replacing the constraints by

∑g∈Aλg ⋅g ≤ −1 and λ ≥ 0.

By introducing (slack) variables µ ∈RΩ , these can also be written as

∑g∈Aλg ⋅g+∑ω∈Ω µω ⋅1ω = 0 and λ ≥ 0 and µ ≥ 1,

which express that the origin must lie in a closed cone spanned by the elements of A
and {1ω ∶ω ∈Ω}.

A typical inference drawn from a set of almost desirable gambles A⋐L (or the
lower prevision it may be derived from) is the lower prevision for a gamble f ∈ L.
This is calculated using natural extension [8, §3.1], i.e., the linear program below:

maximize α ∈R,
subject to f −α ≥∑g∈Aλg ⋅g and λ ≥ 0.

By introducing variables µ ∈RΩ , the constraints can be written as

∑g∈Aλg ⋅g+∑ω∈Ω µω ⋅1ω +α = f and λ ≥ 0 and µ ≥ 0,

The CONEstrip Algorithm 3

which express that f must lie in the closed cone spanned by the elements of A,
{1ω ∶ ω ∈ Ω}, and {1Ω ,−1Ω}. This problem is always feasible: take, for example,
λ = 0, α =min f , and µ = f −min f ; it will be unbounded if A incurs sure loss.

On top of avoiding sure loss, a lower prevision P ∈ [K→R], with K ⋐L, may be
required to be coherent [8, §2.5]. This can be checked by verifying that for all f ∈ L
the natural extension coincides with P f , so we do not need to investigate this further.

Conditional Lower Previsions. Moving from unconditional to conditional lower
previsions, the basic ideas stay the same, but become more involved because we need
to take the conditioning events into account.

Avoiding partial loss [8, §7.1.2–3 & Notes 7.1(7.)] replaces avoiding sure loss.
Checking whether a conditional lower prevision P ∈ [N → R], with N ⋐L×Ω

∗

non-empty, incurs partial loss amounts to solving the feasibility problem below [3,
(17)], in which B ∶= {([h−P(h∣B)] ⋅1B,B) ∶ (h,B) ∈ N} ∶

find (λ ,ε) ∈RB ×RB,
subject to ∑(g,B)∈B λg,B ⋅ [g+εg,B ⋅1B] ≤ 0 and λ > 0 and ε ⋗ 0.

An algorithm for solving this bilinearly constrained feasibility problem using a
sequence of linear programs has been first presented by Walley et al. [10, Alg. 2] for
a subclass and made explicit for the general case by Couso and Moral [3, Alg. 1]. By
introducing variables ν ∈RB ×RB and µ ∈RΩ , the constraints can be written as

∑(g,B)∈B λg,B ⋅ [νg,B,g ⋅g+νg,B,B ⋅1B]+∑ω∈Ω µω ⋅1ω = 0

and λ > 0 and ν ⋗ 0 and µ ≥ 0,

which express that the origin must lie in a general cone spanned by elements of
⋃(g,B)∈B{(1−δ) ⋅g+δ ⋅1B ∶ 0 < δ < 1} and {1ω ∶ω ∈Ω}.

Inferring the lower prevision of a gamble f ∈ L conditional on an event C ⊆ Ω

from a given conditional lower prevision P ∈ [N →R] as above is calculated using a
generalization of the natural extension procedure seen before [3, (21)]:

maximize α ∈R,
subject to f ⋅1C −α ⋅1C ≥∑(g,B)∈B λg,B ⋅ [g+εg,B ⋅1B] and λ ≥ 0 and ε ⋗ 0.

Again, this problem can be solved using linear program iteration [10, Alg. 4]-[3,
Alg. 2]. By introducing variables ν ∈RB ×RB and µ ∈RΩ , the constraints can be
written as

∑(g,B)∈B λg,B ⋅ [νg,B,g ⋅g+νg,B,B ⋅1B]+∑ω∈Ω µω ⋅1ω +α ⋅1C = f ⋅1C

and λ ≥ 0 and ν ⋗ 0 and µ ≥ 0,

which express that f ⋅ 1C must lie in a general cone spanned by elements of
⋃(g,B)∈B{(1−δ) ⋅g+δ ⋅1B ∶ 0 < δ < 1}, {1ω ∶ω ∈Ω}, and {1C,−1C}. This is always
feasible: take, e.g., λ = 0, α =min(f ⋅1C), and µ = [f −min(f ⋅1C)] ⋅1C.

4 Erik Quaeghebeur

3 Representation & Problem Formulation

In the previous section, we presented four problems from the literature that can
essentially be formulated in terms of (conditional) lower previsions and that result in
specific general cones. General sets of desirable gambles [8, App. F]-[9, §6]-[4] take
the form of far more general general cones, and in generalizations of desirability [6]
essentially any general cone could appear. So we must be able to deal with the
feasibility and optimization problems that arise out of working with such models.

In this section, we will first discuss a representation for finitary general cones.
Then we use that representation to formulate the general problem we want to tackle.

Representation of General Cones. We use the idea of Couso and Moral [3,
Thm. 13; the need for such a representation is illustrated in Examples 3 & 4] to
represent a finitary general cone as a convex hull of a finite number of finitary open
cones. Formally, given a finite set of finite sets of gamblesR⋐L∗, the corresponding
cone is

R ∶= {∑D∈RλD ⋅∑g∈D νD,g ⋅g ∶ λ > 0,ν ⋗ 0}.
Whereas ‘finitary’ has a well-known meaning for open and closed cones—point-

wise strict and non-strict convex hulls of finite sets of rays—, it is a concept we have
fixed for ajar and therefore general cones by choosing a representation. To justify this
choice, we employ facets [11]—the closed cones that are a closed cone’s maximally
dimensional non-trivial faces—to give an appealing polytope-theoretically flavored
definition and then show that the chosen representation satisfies it:

Definition. An ajar cone C is finitary iff its closure clC is finitary and the intersection
of C with each of clC’s facets is a finitary (open, closed, or ajar) cone.

Facet recursion is bound to stop in a finite number of steps: open and closed cones
are terminal, with each step the dimension strictly decreases, and ∅ is clopen.

Theorem. R is a finitary general cone for everyR⋐L∗.

Proof. Because R and its elements have finite cardinality, clR is finitary; also clR = clE , with
E ∶= ⋃R. Let F be one of its (finite number of) facets, let S ∶= {D ∈R ∶ D ⊂ F}, and letD ∶= {D}.
Then S =R∩F , because D∖F ≠∅ implies D∩F =∅ by definition of D and the fact that F is a
facet. The proof is complete by facet recursion (replacingR by S in the first sentence). ⊓⊔
The approach of the proof also allows us to construct a canonical cone-in-facet
representation (cf. concept of zero-layers [2, Ch. 12]). We illustrate this in Figure 1.

Formulation of the General Problem. Given a general cone represented by
R⋐L∗ and a gamble h ∈ L, we wish to

find (λ ,ν) ∈RR×⨉D∈RRD

or maximize an affine function of µ ∶= (λD ⋅νD,g ∶ D ∈ R,g ∈ D),
subject to ∑D∈RλD ⋅∑g∈D νD,g ⋅g = h

and λ > 0 and ν ⋗ 0
and possibly other, linear constraints (POLC) on µ.

The CONEstrip Algorithm 5

g10

g5

g2

g7

g6

g3

g4

g1

g9

g8

{gk ∶ k = 1..10}

{g1,g2}

{g2}

{g2,g4}

{g2} {g4}

{g6} {g8,g9}

Fig. 1 On the left, we show the intersection of a cone R with a plane. It can be represented by
R ∶= {{g3,g5,g10},{g1,g2},{g2,g7},{g8,g9},{g2},{g4},{g6}}. On the right, we order the sets
E—as defined in the proof of the Theorem—for each facet encountered in the facet recursion ofR
according to facet inclusion. Then {{gk ∶ k = 1..10},{g1,g2},{g2,g4},{g6},{g8,g9},{g2},{g4}}
is the resulting cone-in-facet representation forR. Note that in terms of set sizes, this representation
is not minimal, as {{g5,g7,g10},{g1,g2},{g8,g9},{g2},{g4},{g6}} also representsR.

Fig. 2 We use the CONEstrip algorithm to check whether g3 and g1 lie in the coneR of Figure 1.
First g3: in the first iteration, τ{g2}

= τ{g4}
= τ{−g3}

= 1 and τ is zero for other indices; because
possibly, e.g., µ{g3,g5,g10},g3

> 0, we might need a second iteration—with S ={{g2},{g4},{−g3}}—
in which τ = 1, so g3 ∈ R. Next g1: in the first iteration, τ{g2}

= τ{g1,g2}
= τ{−g1}

= 1 and τ is
zero for other indices; because necessarily µ{g3,g5,g10},g10

> 0, we need a second iteration—with
S = {{g2},{g1,g2},{−g1}}—which is infeasible, so g1 ∉ R.

0

g1

g2

h
0

g1

g2

h g1+g2

Fig. 3 On the left, we show the blunt closed cone C ∶= {λ1 ⋅g1+λ2 ⋅g2 ∶ λ > 0} (thin lines) and its
proxy C′ ∶= {µ1 ⋅g1+µ2 ⋅g2 ∶ µ ≥ 0,µ1+µ2 ≥ 1} (thick lines): {κ ⋅h ∶ κ ≥ 1}∩C′ ≠ ∅ is equivalent
to h ∈ C. On the right, we show the open cone C ∶= {ν1 ⋅g1 +ν2 ⋅g2 ∶ ν ⋗ 0} (dashed lines) and its
proxy C′ ∶= {µ1 ⋅g1+µ2 ⋅g2 ∶ µ ≥ 1} (thick lines): {κ ⋅h ∶ κ ≥ 1}∩C′ ≠ ∅ is equivalent to h ∈ C.

To appreciate the general applicability of this problem for consistency checking
and inference, let us look at how the problems discussed in Section 2 fit:

Incurring sure loss (given A of Sec. 2): R ∶= {{1ω ∶ω ∈Ω}∪A∖{0}} and h ∶= 0.
Unconditional natural extension (given A and f of Sec. 2):
R ∶= {{g} ∶ g ∈ A}∪{{1Ω},{−1Ω},{0}}∪{{1ω} ∶ω ∈Ω} and h ∶= f ;
objective function expression µ

{1Ω},1Ω
−µ
{−1Ω},−1Ω

.
Incurring partial loss (given B of Sec. 2):
R ∶= {{g,1B} ∶ (g,B) ∈ B∖[{0}×Ω

∗]}∪{{1ω} ∶ω ∈Ω} and h ∶= 0.
Conditional natural extension (given B, f , and C of Sec. 2):
R ∶= {{g,1B} ∶ (g,B) ∈ B}∪{{1C},{−1C},{0}}∪{{1ω} ∶ω ∈Ω} and h ∶= f ⋅1C;
objective function expression µ

{1C},1C
−µ
{−1C},−1C

.

The inclusion and exclusion of {0} is essentially a way of selecting between con-
straints λ ≥ 0 and λ > 0.

6 Erik Quaeghebeur

4 The CONEstrip Algorithm

Now that we have formulated the general problem and have a feel for the general
cone representation used in this formulation, we are ready to work towards the actual
algorithm that will allow us to solve this general problem. Before presenting the
algorithm itself, we perform a supporting analysis of the general problem.

Analysis of the General Problem. In the general problem formulation we gave
in Section 3, the (non-additional) constraints express that h must lie in the general
cone represented by R. For the feasibility problem, we can actually assume in all
generality that h = 0, because we allow additional linear constraints on µ . To see this,
consider the original feasibility problem and write it as

find (λ ,ν) ∈RR∪{{−h}}×⨉D∈R∪{{−h}}RD,
subject to ∑D∈R∪{{−h}}λD ⋅∑g∈D νD,g ⋅g = 0

and λ > 0 and ν ⋗ 0 and µ
{−h},−h = λ

{−h} ⋅ν{−h},−h ≥ 1

and POLC on µ ∶= (λD ⋅νD,g ∶ D ∈ R,g ∈ D),

whose feasible solutions µ can be related to those of the original problem by dividing
them by µ

{−h},−h.
For this feasibility problem, checking whether or not 0 lies in the blunt closure

ofR can be done by solving the following linear programming feasibility problem:

find µ ∈ ⨉D∈RRD,
subject to ∑D∈R∑g∈D µD,g ⋅g = 0 and µ ≥ 0 and POLC on µ

and ∑D∈R∑g∈D µD,g ≥ 1.

where the last constraint is a proxy for the blunting—i.e., using > instead of ≥—
implied by the constraint λ > 0 (cf. Figure 3). If this problem is feasible, then 0 lies
either in the interior ofR or in a facet. The interior case can be checked by solving
another linear programming feasibility problem:

find µ ∈ ⨉D∈RRD,
subject to ∑D∈R∑g∈D µD,g ⋅g = 0 and µ ≥ 1 and POLC on µ,

where µ ≥ 1 is a proxy for the constraint ν ⋗ 0 (cf. Figure 3).
Now, if h lies in the closure, but not the interior, it must lie on a facet. From

the proof of the Theorem we know that we are then actually faced with the same
type of feasibility problem we started out with, but now withR replaced by S ⊂R.
Based on this insight, we could construct a recursion algorithm. However, this
would involve facet enumeration, which is a computationally expensive operation [1].
Nevertheless, the key insight is that, to solve the feasibility problem, we must identify
the facet containing 0. Put differently, we must eliminate those elements fromR that
preclude 0 from lying in the (relative) interior ofR.

The CONEstrip Algorithm 7

The Algorithm for the Feasibility Problem. The idea is to relax the general fea-
sibility problem to a linear programming problem and detect which elements D
ofR make the problems infeasible if λD > 0. This is done by transforming it into a
blunted closure-case optimization problem with an objective that essentially rewards
solutions that are close to interior-case solutions. So, given the general feasibility
problem of Section 3 with arbitraryR⋐L∗ and h ∶= 0, the algorithm is:

1.
maximize ∑D∈R τD,

subject to ∑D∈R∑g∈D µD,g ⋅g = 0 and µ ≥ 0 and POLC on µ

and 0 ≤ τ ≤ 1 and ∀D ∈R ∶ τD ≤ µD and ∑D∈R τD ≥ 1.

2. a. If there is no feasible solution, then the general problem is infeasible.
b. Otherwise set S ∶= {D ∈R ∶ τD > 0}; τ is equal to 1 on S:

i. If ∀D ∈R∖S ∶ µD = 0, then the general problem is feasible.
ii. Otherwise, return to step 1 withR replaced by S .

We call this the CONEstrip algorithm because of step 2(b)ii, in which the irrelevant
parts of the cone (representation) are stripped away. In Figure 2, the algorithm is
illustrated on the cone of Figure 1. The algorithm is implemented in and tested with
murasyp [5].

Proposition. The claims made in the CONEstrip algorithm are veracious and it
terminates after at most ∣R∣−1 iterations.
Proof. First the claim in step 2a: the feasibility requirements of the problem in step 1 are weaker
than those of the general problem for the current representationR (∑D∈R τD ≥ 1 is a proxy for
λ > 0). Next the claim in step 2b: if µ is a solution, then µ/min{τD ∶ D ∈ S} is a solution for
which the claim can be satisfied, which will be the case, because it increases the objective. Finally
the claim in step 2(b)i: if the condition of the claim is verified, then µ is a solution to the general
problem for the current representationR (take λ equal to 1 and ν equal to µ for indices in S, and
λ equal to 0 and ν arbitrary—e.g., 1—for other indices).

Now let E ∶= {g ∈ ⋃R ∶ (∃D ∈ R ∶ µD,g > 0)}; by step 2(b)ii we know that E contains 0.
Moreover, S =R∩E , so reiterating withR replaced by S leads to an equivalent problem feasibility-
wise. Each iteration, by step 2(b)ii, we know that ∣S∣ < ∣R∣, so at most ∣R∣−1 iterations are necessary
to decide feasibility of the original problem. ⊓⊔
The Algorithm for the Optimization Problem. The idea is to split off the non-
linear aspect of the feasibility part of the general optimization problem and deal with
it using the CONEstrip algorithm. The optimization itself is then reduced to a linear
programming problem. So, given the general optimization problem of Section 3 with
arbitraryR⋐L∗ and h ∈ L, the proposed algorithm is:

1. Apply the CONEstrip algorithm to R∪{−h} with µ
{−h},−h ≥ 1 as an additional

constraint; if feasible, continue to the next step with the terminal set S.
2.

maximize an affine function of µ ∈ ⨉D∈RRD,
subject to ∑D∈S∑g∈D µD,g ⋅g = h

and µ ≥ 0 and POLC on µ,

where µ ≥ 0 is a proxy for µ ⋗ 0 by continuity of the linear objective.

8 Erik Quaeghebeur

5 Conclusion

We now have an efficient, polynomial time algorithm for consistency checking and
inference in uncertainty modeling frameworks using general cones: the number of
linear programs to solve has worst-case complexity linear in the cardinality of the
cone representation. The work of Walley et al. [10] made me believe such an efficient
algorithm was possible, the representation of Couso and Moral [3] provided useful
structure, and a variable-bounding technique spotted in the ‘zero norm’-minimization
literature [7, (1) to (2)] made everything come together.

The CONEstrip algorithm—formulated in terms of linear programs—is rather
high-level. Integrating it with a specific linear programming solver might allow for
a practical increase in efficiency: e.g., the stripping step can be seen as a form of
column elimination. Also, heuristics could be found to reduce the representation size.

The question may arise whether the representation and the algorithm are also
applicable when modeling uncertainty using general bounded polytopes, such as
non-closed credal sets (arising, e.g., when strict bounds on expectations are allowed).
Yes: such polytopes can be seen as intersections of a general cone and a hyperplane.

Acknowledgements For useful discussion, I thank Dirk Aeyels, Gert de Cooman, Nathan Huntley,
and especially Filip Hermans, who also provided very helpful pointers and feedback. I thank the
reviewers for their effort and a much appreciated critical reading.

References

1. Avis D, Bremner D, Seidel R (1997) How good are convex hull algorithms? Computational
Geometry 7:265–301, DOI 10.1016/S0925-7721(96)00023-5

2. Coletti G, Scozzafava R (2002) Probabilistic logic in a coherent setting. Kluwer Academic
Publishers, DOI 10.1007/978-94-010-0474-9

3. Couso I, Moral S (2011) Sets of desirable gambles: conditioning, representation, and precise
probabilities. International Journal of Approximate Reasoning 52(7):1034–1055, DOI 10.
1016/j.ijar.2011.04.004

4. Quaeghebeur E (at the editor) Desirability. In: Coolen FPA, Augustin T, De Cooman G, Troffaes
MCM (eds) Introduction to Imprecise Probabilities, Wiley

5. Quaeghebeur E (in progress) murasyp: Python software for accept/reject statement-based
uncertainty modeling. URL http://equaeghe.github.com/murasyp

6. Quaeghebeur E, De Cooman G, Hermans F (in preparation) Accept & reject statement-based
uncertainty models

7. Rinaldi F, Schoen F, Sciandrone M (2010) Concave programming for minimizing the zero-
norm over polyhedral sets. Computational Optimization and Applications 46(3):467–486,
DOI 10.1007/s10589-008-9202-9

8. Walley P (1991) Statistical Reasoning with Imprecise Probabilities. Chapman & Hall, London
9. Walley P (2000) Towards a unified theory of imprecise probability. International Journal of

Approximate Reasoning 24(2-3):125–148, DOI 10.1016/S0888-613X(00)00031-1
10. Walley P, Pelessoni R, Vicig P (2004) Direct algorithms for checking consistency and mak-

ing inferences from conditional probability assessments. Journal of Statistical Planning and
Inference 126(1):119–151, DOI 10.1016/j.jspi.2003.09.005

11. Ziegler GM (1995) Lectures on Polytopes. Springer

10.1016/S0925-7721(96)00023-5
10.1007/978-94-010-0474-9
10.1016/j.ijar.2011.04.004
10.1016/j.ijar.2011.04.004
http://equaeghe.github.com/murasyp
10.1007/s10589-008-9202-9
10.1016/S0888-613X(00)00031-1
10.1016/j.jspi.2003.09.005

