50,787 research outputs found

    Synergies between app-based car-related shared mobility services for the development of more profitable business models

    Get PDF
    Purpose: Emerging shared mobility services are an opportunity for cities to reduce the number of car single trips to both improve traffic congestion and the environment. Users of shared mobility services, such as carsharing, ridesharing and singular and shared ride-hailing services, often need to be customers of more than one service to cover all their transport needs, since few mobility providers offer more than one of these services from a single platform. On the other hand, providers offering these services separately do not optimize costly resources and activities, such as the vehicles or the technology. Hence, the aim of this paper is to find synergies between the different app-based car-related shared mobility services that foster the development of new business models, to increase the profitability of these services. Design/methodology/approach: The research approach is built on the literature of car-related shared mobility services business models, supported by the review of certain outstanding services websites, and face-to-face interviews with users and drivers of these transport services. The analysis is presented by means of the Business Model Canvas methodology. Findings: Based on the synergies found, this paper suggests a few different approaches for services to share some resources and activities. Originality/value: This study identifies the common features of carsharing, ridesharing and singular and shared ride-hailing services to develop more profitable business models, based on providing the services in aggregated form, or outsourcing activities and resources. In addition, the implications of these proposals are discussed as advantages and drawbacks from a business perspectivePeer ReviewedPostprint (published version

    Enabling IoT ecosystems through platform interoperability

    Get PDF
    Today, the Internet of Things (IoT) comprises vertically oriented platforms for things. Developers who want to use them need to negotiate access individually and adapt to the platform-specific API and information models. Having to perform these actions for each platform often outweighs the possible gains from adapting applications to multiple platforms. This fragmentation of the IoT and the missing interoperability result in high entry barriers for developers and prevent the emergence of broadly accepted IoT ecosystems. The BIG IoT (Bridging the Interoperability Gap of the IoT) project aims to ignite an IoT ecosystem as part of the European Platforms Initiative. As part of the project, researchers have devised an IoT ecosystem architecture. It employs five interoperability patterns that enable cross-platform interoperability and can help establish successful IoT ecosystems.Peer ReviewedPostprint (author's final draft

    Prototyping the recursive internet architecture: the IRATI project approach

    Get PDF
    In recent years, many new Internet architectures are being proposed to solve shortcomings in the current Internet. A lot of these new architectures merely extend the current TCP/IP architecture and hence do not solve the fundamental cause of these problems. The Recursive Internet Architecture (RINA) is a true new network architecture, developed from scratch, building on lessons learned in the past. RINA prototyping efforts have been ongoing since 2010, but a prototype on which a commercial RINA implementation can be built has not been developed yet. The goal of the IRATI research project is to develop and evaluate such a prototype in Linux/OS. This article focuses on the software design required to implement a network stack in Linux/OS. We motivate the placement of, and communication between, the different software components in either the kernel or user space. The first open source prototype of the IRATI implementation of RINA will be available in June 2014 for researchers, developers, and early adopters

    Understanding consumer demand for new transport technologies and services, and implications for the future of mobility

    Full text link
    The transport sector is witnessing unprecedented levels of disruption. Privately owned cars that operate on internal combustion engines have been the dominant modes of passenger transport for much of the last century. However, recent advances in transport technologies and services, such as the development of autonomous vehicles, the emergence of shared mobility services, and the commercialization of alternative fuel vehicle technologies, promise to revolutionise how humans travel. The implications are profound: some have predicted the end of private car dependent Western societies, others have portended greater suburbanization than has ever been observed before. If transport systems are to fulfil current and future needs of different subpopulations, and satisfy short and long-term societal objectives, it is imperative that we comprehend the many factors that shape individual behaviour. This chapter introduces the technologies and services most likely to disrupt prevailing practices in the transport sector. We review past studies that have examined current and future demand for these new technologies and services, and their likely short and long-term impacts on extant mobility patterns. We conclude with a summary of what these new technologies and services might mean for the future of mobility.Comment: 15 pages, 0 figures, book chapte

    International conference on software engineering and knowledge engineering: Session chair

    Get PDF
    The Thirtieth International Conference on Software Engineering and Knowledge Engineering (SEKE 2018) will be held at the Hotel Pullman, San Francisco Bay, USA, from July 1 to July 3, 2018. SEKE2018 will also be dedicated in memory of Professor Lofti Zadeh, a great scholar, pioneer and leader in fuzzy sets theory and soft computing. The conference aims at bringing together experts in software engineering and knowledge engineering to discuss on relevant results in either software engineering or knowledge engineering or both. Special emphasis will be put on the transference of methods between both domains. The theme this year is soft computing in software engineering & knowledge engineering. Submission of papers and demos are both welcome

    Carbon Free Boston: Transportation Technical Report

    Get PDF
    Part of a series of reports that includes: Carbon Free Boston: Summary Report; Carbon Free Boston: Social Equity Report; Carbon Free Boston: Technical Summary; Carbon Free Boston: Buildings Technical Report; Carbon Free Boston: Waste Technical Report; Carbon Free Boston: Energy Technical Report; Carbon Free Boston: Offsets Technical ReportOVERVIEW: Transportation connects Boston’s workers, residents and tourists to their livelihoods, health care, education, recreation, culture, and other aspects of life quality. In cities, transit access is a critical factor determining upward mobility. Yet many urban transportation systems, including Boston’s, underserve some populations along one or more of those dimensions. Boston has the opportunity and means to expand mobility access to all residents, and at the same time reduce GHG emissions from transportation. This requires the transformation of the automobile-centric system that is fueled predominantly by gasoline and diesel fuel. The near elimination of fossil fuels—combined with more transit, walking, and biking—will curtail air pollution and crashes, and dramatically reduce the public health impact of transportation. The City embarks on this transition from a position of strength. Boston is consistently ranked as one of the most walkable and bikeable cities in the nation, and one in three commuters already take public transportation. There are three general strategies to reaching a carbon-neutral transportation system: • Shift trips out of automobiles to transit, biking, and walking;1 • Reduce automobile trips via land use planning that encourages denser development and affordable housing in transit-rich neighborhoods; • Shift most automobiles, trucks, buses, and trains to zero-GHG electricity. Even with Boston’s strong transit foundation, a carbon-neutral transportation system requires a wholesale change in Boston’s transportation culture. Success depends on the intelligent adoption of new technologies, influencing behavior with strong, equitable, and clearly articulated planning and investment, and effective collaboration with state and regional partners.Published versio

    Firms' transition towards green product service system innovators

    Get PDF
    Within this paper we explore transition paths firms can take to become product service system (PSS) innovators. Applying the dynamic capability approach we study how three firms have developed PSS innovations in the mobility sector (Car2Go by Daimler AG, Connect by Hertz by The Hertz Corporation, Better Place). We explore the different paths the firms have taken originating from different capability sets. Based on semi-structured qualitative interviews with project managers of successful PSS innovations we propose a framework that incorporates three major transition paths. We derive propositions for necessary capability sets for different firm types, the sequence of necessary capability sets along the innovation process and discuss different types of environmental gains realized through PSS. --Innovation management,product service system,transition path,sustainability
    corecore