4,902 research outputs found

    Effective Unsupervised Author Disambiguation with Relative Frequencies

    Full text link
    This work addresses the problem of author name homonymy in the Web of Science. Aiming for an efficient, simple and straightforward solution, we introduce a novel probabilistic similarity measure for author name disambiguation based on feature overlap. Using the researcher-ID available for a subset of the Web of Science, we evaluate the application of this measure in the context of agglomeratively clustering author mentions. We focus on a concise evaluation that shows clearly for which problem setups and at which time during the clustering process our approach works best. In contrast to most other works in this field, we are sceptical towards the performance of author name disambiguation methods in general and compare our approach to the trivial single-cluster baseline. Our results are presented separately for each correct clustering size as we can explain that, when treating all cases together, the trivial baseline and more sophisticated approaches are hardly distinguishable in terms of evaluation results. Our model shows state-of-the-art performance for all correct clustering sizes without any discriminative training and with tuning only one convergence parameter.Comment: Proceedings of JCDL 201

    Embedding Words and Senses Together via Joint Knowledge-Enhanced Training

    Get PDF
    Word embeddings are widely used in Nat-ural Language Processing, mainly due totheir success in capturing semantic infor-mation from massive corpora. However,their creation process does not allow thedifferent meanings of a word to be auto-matically separated, as it conflates theminto a single vector. We address this issueby proposing a new model which learnsword and sense embeddings jointly. Ourmodel exploits large corpora and knowl-edge from semantic networks in order toproduce a unified vector space of wordand sense embeddings. We evaluate themain features of our approach both qual-itatively and quantitatively in a variety oftasks, highlighting the advantages of theproposed method in comparison to state-of-the-art word- and sense-based models

    Integrating Weakly Supervised Word Sense Disambiguation into Neural Machine Translation

    Full text link
    This paper demonstrates that word sense disambiguation (WSD) can improve neural machine translation (NMT) by widening the source context considered when modeling the senses of potentially ambiguous words. We first introduce three adaptive clustering algorithms for WSD, based on k-means, Chinese restaurant processes, and random walks, which are then applied to large word contexts represented in a low-rank space and evaluated on SemEval shared-task data. We then learn word vectors jointly with sense vectors defined by our best WSD method, within a state-of-the-art NMT system. We show that the concatenation of these vectors, and the use of a sense selection mechanism based on the weighted average of sense vectors, outperforms several baselines including sense-aware ones. This is demonstrated by translation on five language pairs. The improvements are above one BLEU point over strong NMT baselines, +4% accuracy over all ambiguous nouns and verbs, or +20% when scored manually over several challenging words.Comment: To appear in TAC

    Good Applications for Crummy Entity Linkers? The Case of Corpus Selection in Digital Humanities

    Get PDF
    Over the last decade we have made great progress in entity linking (EL) systems, but performance may vary depending on the context and, arguably, there are even principled limitations preventing a "perfect" EL system. This also suggests that there may be applications for which current "imperfect" EL is already very useful, and makes finding the "right" application as important as building the "right" EL system. We investigate the Digital Humanities use case, where scholars spend a considerable amount of time selecting relevant source texts. We developed WideNet; a semantically-enhanced search tool which leverages the strengths of (imperfect) EL without getting in the way of its expert users. We evaluate this tool in two historical case-studies aiming to collect a set of references to historical periods in parliamentary debates from the last two decades; the first targeted the Dutch Golden Age, and the second World War II. The case-studies conclude with a critical reflection on the utility of WideNet for this kind of research, after which we outline how such a real-world application can help to improve EL technology in general.Comment: Accepted for presentation at SEMANTiCS '1

    Deep Joint Entity Disambiguation with Local Neural Attention

    Full text link
    We propose a novel deep learning model for joint document-level entity disambiguation, which leverages learned neural representations. Key components are entity embeddings, a neural attention mechanism over local context windows, and a differentiable joint inference stage for disambiguation. Our approach thereby combines benefits of deep learning with more traditional approaches such as graphical models and probabilistic mention-entity maps. Extensive experiments show that we are able to obtain competitive or state-of-the-art accuracy at moderate computational costs.Comment: Conference on Empirical Methods in Natural Language Processing (EMNLP) 2017 long pape

    The data set knowledge graph: Creating a linked open data source for data sets

    Get PDF
    Several scholarly knowledge graphs have been proposed to model and analyze the academic landscape. However, although the number of data sets has increased remarkably in recent years, these knowledge graphs do not primarily focus on data sets but rather on associated entities such as publications. Moreover, publicly available data set knowledge graphs do not systematically contain links to the publications in which the data sets are mentioned. In this paper, we present an approach for constructing an RDF knowledge graph that fulfills these mentioned criteria. Our data set knowledge graph, DSKG, is publicly available at http://dskg.org and contains metadata of data sets for all scientific disciplines. To ensure high data quality of the DSKG, we first identify suitable raw data set collections for creating the DSKG. We then establish links between the data sets and publications modeled in the Microsoft Academic Knowledge Graph that mention these data sets. As the author names of data sets can be ambiguous, we develop and evaluate a method for author name disambiguation and enrich the knowledge graph with links to ORCID. Overall, our knowledge graph contains more than 2,000 data sets with associated properties, as well as 814,000 links to 635,000 scientific publications. It can be used for a variety of scenarios, facilitating advanced data set search systems and new ways of measuring and awarding the provisioning of data sets
    • …
    corecore