12,874 research outputs found

    Modelling chemotaxis of microswimmers: from individual to collective behavior

    Full text link
    We discuss recent progress in the theoretical description of chemotaxis by coupling the diffusion equation of a chemical species to equations describing the motion of sensing microorganisms. In particular, we discuss models for autochemotaxis of a single microorganism which senses its own secretion leading to phenomena such as self-localization and self-avoidance. For two heterogeneous particles, chemotactic coupling can lead to predator-prey behavior including chase and escape phenomena, and to the formation of active molecules, where motility spontaneously emerges when the particles approach each other. We close this review with some remarks on the collective behavior of many particles where chemotactic coupling induces patterns involving clusters, spirals or traveling waves.Comment: to appear as a contribution to the book "Chemical kinetics beyond the textbook

    Valuing Ecosystem Services with Fishery Rents: A Lumped-Parameter Approach to Hypoxia in the Neuse River Estuary

    Get PDF
    Valuing ecosystem services with microeconomic underpinnings presents challenges because these services typically constitute nonmarket values and contribute to human welfare indirectly through a series of ecological pathways that are dynamic, nonlinear, and difficult to quantify and link to appropriate economic spatial and temporal scales. This paper develops and demonstrates a method to value a portion of ecosystem services when a commercial fishery is dependent on the quality of estuarine habitat. Using a lumped-parameter, dynamic open access bioeconomic model that is spatially explicit and includes predator-prey interactions, this paper quantifies part of the value of improved ecosystem function in the Neuse River Estuary when nutrient pollution is reduced. Specifically, it traces the effects of nitrogen loading on the North Carolina commercial blue crab fishery by modeling the response of primary production and the subsequent impact on hypoxia (low dissolved oxygen). Hypoxia, in turn, affects blue crabs and their preferred prey. The discounted present value fishery rent increase from a 30% reduction in nitrogen loadings in the Neuse is $2.56 million, though this welfare estimate is fairly sensitive to some parameter values. Surprisingly, this number is not sensitive to initial conditions.Open access, Predator-prey, Hypoxia, Habitat-dependent fisheries

    Synergetic modelling of the Russian Federation’s energy system parameters

    Full text link
    The energy system in any country is the basis of the whole economy. The level of its development largely determines the quantity and quality of economic entities, periods of economic growth, fall and stagnation. A high percentage of the power-deficient municipalities in the Russian Federation shows the substantive issues in this sphere that carries a threat to the energy security of the state. One of the promising trends for enhancing the energy security is the renewable energy sources (RES). Their use has the obvious benefits: it provides electricity to power-deficient and inaccessible areas, contributes to the introduction and spread of new technologies, thus solving the important social and economic problem. At that, it is important to determine the optimum ratio using of the recovery of renewable and conventional energy sources (CES). One of the main challenges in this regard is to build a model that adequately reflects the ratio of renewable and conventional energy sources in the Russian energy system. The paper presents the results of a synergistic approach to the construction of such a model. The Lotka- Volterra model was the main instrument used, which allowed to study a behavior pattern of the considered systems on the basis of the simplified regularities. It was found that the best possible qualitative “jump” in the Russian energy sector was in 2008. The calculations allowed to investigate the behavior of the Russian energy system with the variation of the initial conditions and to assess the validity of the targets for the share of electricity produced through the use of renewable energy in the total electric power of the country

    Big Data and Changing Concepts of the Human

    Get PDF
    Big Data has the potential to enable unprecedentedly rigorous quantitative modeling of complex human social relationships and social structures. When such models are extended to nonhuman domains, they can undermine anthropocentric assumptions about the extent to which these relationships and structures are specifically human. Discoveries of relevant commonalities with nonhumans may not make us less human, but they promise to challenge fundamental views of what it is to be human

    Fitting stochastic predator-prey models using both population density and kill rate data

    Full text link
    Most mechanistic predator-prey modelling has involved either parameterization from process rate data or inverse modelling. Here, we take a median road: we aim at identifying the potential benefits of combining datasets, when both population growth and predation processes are viewed as stochastic. We fit a discrete-time, stochastic predator-prey model of the Leslie type to simulated time series of densities and kill rate data. Our model has both environmental stochasticity in the growth rates and interaction stochasticity, i.e., a stochastic functional response. We examine what the kill rate data brings to the quality of the estimates, and whether estimation is possible (for various time series lengths) solely with time series of population counts or biomass data. Both Bayesian and frequentist estimation are performed, providing multiple ways to check model identifiability. The Fisher Information Matrix suggests that models with and without kill rate data are all identifiable, although correlations remain between parameters that belong to the same functional form. However, our results show that if the attractor is a fixed point in the absence of stochasticity, identifying parameters in practice requires kill rate data as a complement to the time series of population densities, due to the relatively flat likelihood. Only noisy limit cycle attractors can be identified directly from population count data (as in inverse modelling), although even in this case, adding kill rate data - including in small amounts - can make the estimates much more precise. Overall, we show that under process stochasticity in interaction rates, interaction data might be essential to obtain identifiable dynamical models for multiple species. These results may extend to other biotic interactions than predation, for which similar models combining interaction rates and population counts could be developed
    corecore