We discuss recent progress in the theoretical description of chemotaxis by
coupling the diffusion equation of a chemical species to equations describing
the motion of sensing microorganisms. In particular, we discuss models for
autochemotaxis of a single microorganism which senses its own secretion leading
to phenomena such as self-localization and self-avoidance. For two
heterogeneous particles, chemotactic coupling can lead to predator-prey
behavior including chase and escape phenomena, and to the formation of active
molecules, where motility spontaneously emerges when the particles approach
each other. We close this review with some remarks on the collective behavior
of many particles where chemotactic coupling induces patterns involving
clusters, spirals or traveling waves.Comment: to appear as a contribution to the book "Chemical kinetics beyond the
textbook