18 research outputs found

    Counting solutions of equations over two-element algebras

    Get PDF
    Solving equations is one of the most important problems in computer science. Apart from the problem of existence of solutions of equations we may consider the problem of a number of solutions of equations. Such a problem is much more difficult than the decision one. This paper presents a complete classification of the complexity of the problem of counting solutions of equations over any fixed two-element algebra. It is shown that the complexity of such problems depends only on the clone of term operations of the algebra and for any fixed two-element algebra such a problem is either in FP or #Pcomplete

    An approximation trichotomy for Boolean #CSP

    Get PDF
    We give a trichotomy theorem for the complexity of approximately counting the number of satisfying assignments of a Boolean CSP instance. Such problems are parameterised by a constraint language specifying the relations that may be used in constraints. If every relation in the constraint language is affine then the number of satisfying assignments can be exactly counted in polynomial time. Otherwise, if every relation in the constraint language is in the co-clone IM_2 from Post's lattice, then the problem of counting satisfying assignments is complete with respect to approximation-preserving reductions in the complexity class #RH\Pi_1. This means that the problem of approximately counting satisfying assignments of such a CSP instance is equivalent in complexity to several other known counting problems, including the problem of approximately counting the number of independent sets in a bipartite graph. For every other fixed constraint language, the problem is complete for #P with respect to approximation-preserving reductions, meaning that there is no fully polynomial randomised approximation scheme for counting satisfying assignments unless NP=RP

    Enumerating Homomorphisms

    Get PDF
    The homomorphism problem for relational structures is an abstract way of formulating constraint satisfaction problems (CSP) and various problems in database theory. The decision version of the homomorphism problem received a lot of attention in literature; in particular, the way the graph-theoretical structure of the variables and constraints influences the complexity of the problem is intensively studied. Here we study the problem of enumerating all the solutions with polynomial delay from a similar point of view. It turns out that the enumeration problem behaves very differently from the decision version. We give evidence that it is unlikely that a characterization result similar to the decision version can be obtained. Nevertheless, we show nontrivial cases where enumeration can be done with polynomial delay

    The complexity of global cardinality constraints

    Full text link
    In a constraint satisfaction problem (CSP) the goal is to find an assignment of a given set of variables subject to specified constraints. A global cardinality constraint is an additional requirement that prescribes how many variables must be assigned a certain value. We study the complexity of the problem CCSP(G), the constraint satisfaction problem with global cardinality constraints that allows only relations from the set G. The main result of this paper characterizes sets G that give rise to problems solvable in polynomial time, and states that the remaining such problems are NP-complete

    Galois correspondence for counting quantifiers

    Full text link
    We introduce a new type of closure operator on the set of relations, max-implementation, and its weaker analog max-quantification. Then we show that approximation preserving reductions between counting constraint satisfaction problems (#CSPs) are preserved by these two types of closure operators. Together with some previous results this means that the approximation complexity of counting CSPs is determined by partial clones of relations that additionally closed under these new types of closure operators. Galois correspondence of various kind have proved to be quite helpful in the study of the complexity of the CSP. While we were unable to identify a Galois correspondence for partial clones closed under max-implementation and max-quantification, we obtain such results for slightly different type of closure operators, k-existential quantification. This type of quantifiers are known as counting quantifiers in model theory, and often used to enhance first order logic languages. We characterize partial clones of relations closed under k-existential quantification as sets of relations invariant under a set of partial functions that satisfy the condition of k-subset surjectivity. Finally, we give a description of Boolean max-co-clones, that is, sets of relations on {0,1} closed under max-implementations.Comment: 28 pages, 2 figure
    corecore