224,996 research outputs found

    Universal Statistics of the Critical Depinning Force of Elastic Systems in Random Media

    Full text link
    We study the rescaled probability distribution of the critical depinning force of an elastic system in a random medium. We put in evidence the underlying connection between the critical properties of the depinning transition and the extreme value statistics of correlated variables. The distribution is Gaussian for all periodic systems, while in the case of random manifolds there exists a family of universal functions ranging from the Gaussian to the Gumbel distribution. Both of these scenarios are a priori experimentally accessible in finite, macroscopic, disordered elastic systems.Comment: 4 pages, 4 figure

    Towards a Definition of Role-related Concepts for Business Modeling

    Get PDF
    Abstract—While several role-related concepts play an\ud important role in business modeling, their definitions,\ud relations, and use differ greatly between languages, papers,\ud and reports. Due to this, the knowledge captured by models is\ud not transferred correctly, and models are incomparable. In this\ud paper, we provide a meta-model and definitions for several\ud role-related concepts based on the practice of existing modeling\ud languages and ontological analysis. This forms a basis for\ud creating comparable, formal business models, which enable\ud further enterprise engineering, in a repeatable wa

    Depinning of a domain wall in the 2d random-field Ising model

    Full text link
    We report studies of the behaviour of a single driven domain wall in the 2-dimensional non-equilibrium zero temperature random-field Ising model, closely above the depinning threshold. It is found that even for very weak disorder, the domain wall moves through the system in percolative fashion. At depinning, the fraction of spins that are flipped by the proceeding avalanche vanishes with the same exponent beta=5/36 as the infinite percolation cluster in percolation theory. With decreasing disorder strength, however, the size of the critical region decreases. Our numerical simulation data appear to reflect a crossover behaviour to an exponent beta'=0 at zero disorder strength. The conclusions of this paper strongly rely on analytical arguments. A scaling theory in terms of the disorder strength and the magnetic field is presented that gives the values of all critical exponent except for one, the value of which is estimated from scaling arguments.Comment: 13 pages Revtex, 13 eps figure

    UD Annotatrix: An Annotation Tool For Universal Dependencies

    Get PDF
    In this paper we introduce the UD Annotatrix annotation tool for manual annotation of Universal Dependencies. This tool has been designed with the aim that it should be tailored to the needs of the Universal Dependencies (UD) community, including that it should operate in fully-offline mode, and is freely-available under the GNU GPL licence. In this paper, we provide some background to the tool, an overview of its development, and background on how it works. We compare it with some other widely-used tools which are used for Universal Dependencies annotation, describe some features unique to UD Annotatrix, and finally outline some avenues for future work and provide a few concluding remarks

    Short time relaxation of a driven elastic string in a random medium

    Full text link
    We study numerically the relaxation of a driven elastic string in a two dimensional pinning landscape. The relaxation of the string, initially flat, is governed by a growing length L(t)L(t) separating the short steady-state equilibrated lengthscales, from the large lengthscales that keep memory of the initial condition. We find a macroscopic short time regime where relaxation is universal, both above and below the depinning threshold, different from the one expected for standard critical phenomena. Below the threshold, the zero temperature relaxation towards the first pinned configuration provides a novel, experimentally convenient way to access all the critical exponents of the depinning transition independently.Comment: 4.2 pages, 3 figure

    Non-steady relaxation and critical exponents at the depinning transition

    Get PDF
    We study the non-steady relaxation of a driven one-dimensional elastic interface at the depinning transition by extensive numerical simulations concurrently implemented on graphics processing units (GPUs). We compute the time-dependent velocity and roughness as the interface relaxes from a flat initial configuration at the thermodynamic random-manifold critical force. Above a first, non-universal microscopic time-regime, we find a non-trivial long crossover towards the non-steady macroscopic critical regime. This "mesoscopic" time-regime is robust under changes of the microscopic disorder including its random-bond or random-field character, and can be fairly described as power-law corrections to the asymptotic scaling forms yielding the true critical exponents. In order to avoid fitting effective exponents with a systematic bias we implement a practical criterion of consistency and perform large-scale (L~2^{25}) simulations for the non-steady dynamics of the continuum displacement quenched Edwards Wilkinson equation, getting accurate and consistent depinning exponents for this class: \beta = 0.245 \pm 0.006, z = 1.433 \pm 0.007, \zeta=1.250 \pm 0.005 and \nu=1.333 \pm 0.007. Our study may explain numerical discrepancies (as large as 30% for the velocity exponent \beta) found in the literature. It might also be relevant for the analysis of experimental protocols with driven interfaces keeping a long-term memory of the initial condition.Comment: Published version (including erratum). Codes and Supplemental Material available at https://bitbucket.org/ezeferrero/qe

    Non-universal equilibrium crystal shape results from sticky steps

    Full text link
    The anisotropic surface free energy, Andreev surface free energy, and equilibrium crystal shape (ECS) z=z(x,y) are calculated numerically using a transfer matrix approach with the density matrix renormalization group (DMRG) method. The adopted surface model is a restricted solid-on-solid (RSOS) model with "sticky" steps, i.e., steps with a point-contact type attraction between them (p-RSOS model). By analyzing the results, we obtain a first-order shape transition on the ECS profile around the (111) facet; and on the curved surface near the (001) facet edge, we obtain shape exponents having values different from those of the universal Gruber-Mullins-Pokrovsky-Talapov (GMPT) class. In order to elucidate the origin of the non-universal shape exponents, we calculate the slope dependence of the mean step height of "step droplets" (bound states of steps) using the Monte Carlo method, where p=(dz/dx, dz/dy)$, and represents the thermal averag |p| dependence of , we derive a |p|-expanded expression for the non-universal surface free energy f_{eff}(p), which contains quadratic terms with respect to |p|. The first-order shape transition and the non-universal shape exponents obtained by the DMRG calculations are reproduced thermodynamically from the non-universal surface free energy f_{eff}(p).Comment: 31 pages, 21 figure
    • …
    corecore