43,168 research outputs found

    String Theory : Where are we now?

    Get PDF
    This is a brief overview on the current status of string theory for non-specialists. The purpose is to give an aspect on the nature of string theory as a unified theory of all interactions including quantum gravity and to discuss future perspectives. Particular emphases are put on the mysteries why string theory contains gravity and why it resolves the ultraviolet problems.Comment: 19 pages, 1 figure, written version of a general talk in the workshop "Frontier of Theoretical Physics", Beijing, Nov, 1999, minor typos correcte

    Alchemical normal modes unify chemical space

    Get PDF
    In silico design of new molecules and materials with desirable quantum properties by high-throughput screening is a major challenge due to the high dimensionality of chemical space. To facilitate its navigation, we present a unification of coordinate and composition space in terms of alchemical normal modes (ANMs) which result from second order perturbation theory. ANMs assume a predominantly smooth nature of chemical space and form a basis in which new compounds can be expanded and identified. We showcase the use of ANMs for the energetics of the iso-electronic series of diatomics with 14 electrons, BN doped benzene derivatives (C6−2x_{6-2x}(BN)x_{x}H6_6 with x=0,1,2,3x = 0, 1, 2, 3), predictions for over 1.8 million BN doped coronene derivatives, and genetic energy optimizations in the entire BN doped coronene space. Using Ge lattice scans as reference, the applicability ANMs across the periodic table is demonstrated for III-V and IV-IV-semiconductors Si, Sn, SiGe, SnGe, SiSn, as well as AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs, and InSb. Analysis of our results indicates simple qualitative structure property rules for estimating energetic rankings among isomers. Useful quantitative estimates can also be obtained when few atoms are changed to neighboring or lower lying elements in the periodic table. The quality of the predictions often increases with the symmetry of system chosen as reference due to cancellation of odd order terms. Rooted in perturbation theory the ANM approach promises to generally enable unbiased compound exploration campaigns at reduced computational cost

    Steepest Entropy Ascent Model for Far-Non-Equilibrium Thermodynamics. Unified Implementation of the Maximum Entropy Production Principle

    Full text link
    By suitable reformulations, we cast the mathematical frameworks of several well-known different approaches to the description of non-equilibrium dynamics into a unified formulation, which extends to such frameworks the concept of Steepest Entropy Ascent (SEA) dynamics introduced by the present author in previous works on quantum thermodynamics. The present formulation constitutes a generalization also for the quantum thermodynamics framework. In the SEA modeling principle a key role is played by the geometrical metric with respect to which to measure the length of a trajectory in state space. In the near equilibrium limit, the metric tensor is related to the Onsager's generalized resistivity tensor. Therefore, through the identification of a suitable metric field which generalizes the Onsager generalized resistance to the arbitrarily far non-equilibrium domain, most of the existing theories of non-equilibrium thermodynamics can be cast in such a way that the state exhibits a spontaneous tendency to evolve in state space along the path of SEA compatible with the conservation constraints and the boundary conditions. The resulting unified family of SEA dynamical models is intrinsically and strongly consistent with the second law of thermodynamics. Non-negativity of the entropy production is a readily proved general feature of SEA dynamics. In several of the different approaches to non-equilibrium description we consider here, the SEA concept has not been investigated before. We believe it defines the precise meaning and the domain of general validity of the so-called Maximum Entropy Production Principle. It is hoped that the present unifying approach may prove useful in providing a fresh basis for effective, thermodynamically consistent, numerical models and theoretical treatments of irreversible conservative relaxation towards equilibrium from far non-equilibrium states.Comment: 15 pages, 4 figures, to appear in Physical Review

    Reducing "Structure From Motion": a General Framework for Dynamic Vision - Part 1: Modeling

    Get PDF
    The literature on recursive estimation of structure and motion from monocular image sequences comprises a large number of different models and estimation techniques. We propose a framework that allows us to derive and compare all models by following the idea of dynamical system reduction. The "natural" dynamic model, derived by the rigidity constraint and the perspective projection, is first reduced by explicitly decoupling structure (depth) from motion. Then implicit decoupling techniques are explored, which consist of imposing that some function of the unknown parameters is held constant. By appropriately choosing such a function, not only can we account for all models seen so far in the literature, but we can also derive novel ones

    Differential geometric regularization for supervised learning of classifiers

    Full text link
    We study the problem of supervised learning for both binary and multiclass classification from a unified geometric perspective. In particular, we propose a geometric regularization technique to find the submanifold corresponding to an estimator of the class probability P(y|\vec x). The regularization term measures the volume of this submanifold, based on the intuition that overfitting produces rapid local oscillations and hence large volume of the estimator. This technique can be applied to regularize any classification function that satisfies two requirements: firstly, an estimator of the class probability can be obtained; secondly, first and second derivatives of the class probability estimator can be calculated. In experiments, we apply our regularization technique to standard loss functions for classification, our RBF-based implementation compares favorably to widely used regularization methods for both binary and multiclass classification.http://proceedings.mlr.press/v48/baia16.pdfPublished versio

    A general theory of linear cosmological perturbations: stability conditions, the quasistatic limit and dynamics

    Get PDF
    We analyse cosmological perturbations around a homogeneous and isotropic background for scalar-tensor, vector-tensor and bimetric theories of gravity. Building on previous results, we propose a unified view of the effective parameters of all these theories. Based on this structure, we explore the viable space of parameters for each family of models by imposing the absence of ghosts and gradient instabilities. We then focus on the quasistatic regime and confirm that all these theories can be approximated by the phenomenological two-parameter model described by an effective Newton's constant and the gravitational slip. Within the quasistatic regime we pinpoint signatures which can distinguish between the broad classes of models (scalar-tensor, vector-tensor or bimetric). Finally, we present the equations of motion for our unified approach in such a way that they can be implemented in Einstein-Boltzmann solvers
    • …
    corecore