8 research outputs found

    A Knowledge Graph-Based Method for Automating Systematic Literature Reviews

    Full text link
    Systematic Literature Reviews aim at investigating current approaches to conclude a research gap or determine a futuristic approach. They represent a significant part of a research activity, from which new concepts stem. However, with the massive availability of publications at a rapid growing rate, especially digitally, it becomes challenging to efficiently screen and assess relevant publications. Another challenge is the continuous assessment of related work over a long period of time and the consequent need for a continuous update, which can be a time-consuming task. Knowledge graphs model entities in a connected manner and enable new insights using different reasoning and analysis methods. The objective of this work is to present an approach to partially automate the conduction of a Systematic Literature Review as well as classify and visualize the results as a knowledge graph. The designed software prototype was used for the conduction of a review on context-awareness in automation systems with considerably accurate results compared to a manual conduction.Comment: 9 pages, 7 figures, 2 table

    NLPContributions: An Annotation Scheme for Machine Reading of Scholarly Contributions in Natural Language Processing Literature

    Get PDF
    We describe an annotation initiative to capture the scholarly contributions in natural language processing (NLP) articles, particularly, for the articles that discuss machine learning (ML) approaches for various information extraction tasks. We develop the annotation task based on a pilot annotation exercise on 50 NLP-ML scholarly articles presenting contributions to five information extraction tasks 1. machine translation, 2. named entity recognition, 3. question answering, 4. relation classification, and 5. text classification. In this article, we describe the outcomes of this pilot annotation phase. Through the exercise we have obtained an annotation methodology; and found ten core information units that reflect the contribution of the NLP-ML scholarly investigations. The resulting annotation scheme we developed based on these information units is called NLPContributions. The overarching goal of our endeavor is four-fold: 1) to find a systematic set of patterns of subject-predicate-object statements for the semantic structuring of scholarly contributions that are more or less generically applicable for NLP-ML research articles; 2) to apply the discovered patterns in the creation of a larger annotated dataset for training machine readers of research contributions; 3) to ingest the dataset into the Open Research Knowledge Graph (ORKG) infrastructure as a showcase for creating user-friendly state-of-the-art overviews; 4) to integrate the machine readers into the ORKG to assist users in the manual curation of their respective article contributions. We envision that the NLPContributions methodology engenders a wider discussion on the topic toward its further refinement and development. Our pilot annotated dataset of 50 NLP-ML scholarly articles according to the NLPContributions scheme is openly available to the research community at https://doi.org/10.25835/0019761.Comment: In Proceedings of the 1st Workshop on Extraction and Evaluation of Knowledge Entities from Scientific Documents (EEKE 2020) co-located with the ACM/IEEE Joint Conference on Digital Libraries in 2020 (JCDL 2020), Virtual Event, China, August 1. http://ceur-ws.org/Vol-2658

    The Computer Science Ontology: A Comprehensive Automatically-Generated Taxonomy of Research Areas

    Get PDF
    Ontologies of research areas are important tools for characterising, exploring, and analysing the research landscape. Some fields of research are comprehensively described by large-scale taxonomies, e.g., MeSH in Biology and PhySH in Physics. Conversely, current Computer Science taxonomies are coarse-grained and tend to evolve slowly. For instance, the ACM classification scheme contains only about 2K research topics and the last version dates back to 2012. In this paper, we introduce the Computer Science Ontology (CSO), a large-scale, automatically generated ontology of research areas, which includes about 14K topics and 162K semantic relationships. It was created by applying the Klink-2 algorithm on a very large dataset of 16M scientific articles. CSO presents two main advantages over the alternatives: i) it includes a very large number of topics that do not appear in other classifications, and ii) it can be updated automatically by running Klink-2 on recent corpora of publications. CSO powers several tools adopted by the editorial team at Springer Nature and has been used to enable a variety of solutions, such as classifying research publications, detecting research communities, and predicting research trends. To facilitate the uptake of CSO, we have also released the CSO Classifier, a tool for automatically classifying research papers, and the CSO Portal, a web application that enables users to download, explore, and provide granular feedback on CSO. Users can use the portal to navigate and visualise sections of the ontology, rate topics and relationships, and suggest missing ones. The portal will support the publication of and access to regular new releases of CSO, with the aim of providing a comprehensive resource to the various research communities engaged with scholarly data

    Towards a knowledge graph representing research findings by semantifying survey articles

    No full text
    Despite significant advances in technology, the way how research is done and especially communicated has not changed much. We have the vision that ultimately researchers will work on a common knowledge base comprising comprehensive descriptions of their research, thus making research contributions transparent and comparable. The current approach for structuring, systematizing and comparing research results is via survey or review articles. In this article, we describe how surveys for research fields can be represented in a semantic way, resulting in a knowledge graph that describes the individual research problems, approaches, implementations and evaluations in a structured and comparable way. We present a comprehensive ontology for capturing the content of survey articles. We discuss possible applications and present an evaluation of our approach with the retrospective, exemplary semantification of a survey. We demonstrate the utility of the resulting knowledge graph by using it to answer queries about the different research contributions covered by the survey and evaluate how well the query answers serve readers’ information needs, in comparison to having them extract the same information from reading a survey paper

    A comprehensive quality assessment framework for scientific events

    Get PDF
    Systematic assessment of scientific events has become increasingly important for research communities. A range of metrics (e.g., citations, h-index) have been developed by different research communities to make such assessments effectual. However, most of the metrics for assessing the quality of less formal publication venues and events have not yet deeply investigated. It is also rather challenging to develop respective metrics because each research community has its own formal and informal rules of communication and quality standards. In this article, we develop a comprehensive framework of assessment metrics for evaluating scientific events and involved stakeholders. The resulting quality metrics are determined with respect to three general categories—events, persons, and bibliometrics. Our assessment methodology is empirically applied to several series of computer science events, such as conferences and workshops, using publicly available data for determining quality metrics. We show that the metrics’ values coincide with the intuitive agreement of the community on its “top conferences”. Our results demonstrate that highly-ranked events share similar profiles, including the provision of outstanding reviews, visiting diverse locations, having reputed people involved, and renowned sponsors. © 2020, The Author(s)
    corecore