1,007 research outputs found

    Towards a certified computation of homology groups for digital images

    Get PDF
    International audienceIn this paper we report on a project to obtain a verified computation of homology groups of digital images. The methodology is based on program- ming and executing inside the COQ proof assistant. Though more research is needed to integrate and make efficient more processing tools, we present some examples partially computed in COQ from real biomedical images

    Computing Persistent Homology within Coq/SSReflect

    Full text link
    Persistent homology is one of the most active branches of Computational Algebraic Topology with applications in several contexts such as optical character recognition or analysis of point cloud data. In this paper, we report on the formal development of certified programs to compute persistent Betti numbers, an instrumental tool of persistent homology, using the Coq proof assistant together with the SSReflect extension. To this aim it has been necessary to formalize the underlying mathematical theory of these algorithms. This is another example showing that interactive theorem provers have reached a point where they are mature enough to tackle the formalization of nontrivial mathematical theories

    Synthetic Integral Cohomology in Cubical Agda

    Get PDF
    This paper discusses the formalization of synthetic cohomology theory in a cubical extension of Agda which natively supports univalence and higher inductive types. This enables significant simplifications of many proofs from Homotopy Type Theory and Univalent Foundations as steps that used to require long calculations now hold simply by computation. To this end, we give a new definition of the group structure for cohomology with ?-coefficients, optimized for efficient computations. We also invent an optimized definition of the cup product which allows us to give the first complete formalization of the axioms needed to turn the integral cohomology groups into a graded commutative ring. Using this, we characterize the cohomology groups of the spheres, torus, Klein bottle and real/complex projective planes. As all proofs are constructive we can then use Cubical Agda to distinguish between spaces by computation

    Incidence Simplicial Matrices Formalized in Coq/SSReflect

    Get PDF
    International audienceSimplicial complexes are at the heart of Computational Algebraic Topology, since they give a concrete, combinatorial description of otherwise rather abstract objects which makes many important topological computations possible. The whole theory has many applications such as coding theory, robotics or digital image analysis. In this paper we present a formalization in the COQ theorem prover of simplicial complexes and their incidence matrices as well as the main theorem that gives meaning to the definition of homology groups and is a first step towards their computation

    Seventh Biennial Report : June 2003 - March 2005

    No full text
    corecore