20,518 research outputs found

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    A Role-Based Approach for Orchestrating Emergent Configurations in the Internet of Things

    Full text link
    The Internet of Things (IoT) is envisioned as a global network of connected things enabling ubiquitous machine-to-machine (M2M) communication. With estimations of billions of sensors and devices to be connected in the coming years, the IoT has been advocated as having a great potential to impact the way we live, but also how we work. However, the connectivity aspect in itself only accounts for the underlying M2M infrastructure. In order to properly support engineering IoT systems and applications, it is key to orchestrate heterogeneous 'things' in a seamless, adaptive and dynamic manner, such that the system can exhibit a goal-directed behaviour and take appropriate actions. Yet, this form of interaction between things needs to take a user-centric approach and by no means elude the users' requirements. To this end, contextualisation is an important feature of the system, allowing it to infer user activities and prompt the user with relevant information and interactions even in the absence of intentional commands. In this work we propose a role-based model for emergent configurations of connected systems as a means to model, manage, and reason about IoT systems including the user's interaction with them. We put a special focus on integrating the user perspective in order to guide the emergent configurations such that systems goals are aligned with the users' intentions. We discuss related scientific and technical challenges and provide several uses cases outlining the concept of emergent configurations.Comment: In Proceedings of the Second International Workshop on the Internet of Agents @AAMAS201

    Mixed reality participants in smart meeting rooms and smart home enviroments

    Get PDF
    Human–computer interaction requires modeling of the user. A user profile typically contains preferences, interests, characteristics, and interaction behavior. However, in its multimodal interaction with a smart environment the user displays characteristics that show how the user, not necessarily consciously, verbally and nonverbally provides the smart environment with useful input and feedback. Especially in ambient intelligence environments we encounter situations where the environment supports interaction between the environment, smart objects (e.g., mobile robots, smart furniture) and human participants in the environment. Therefore it is useful for the profile to contain a physical representation of the user obtained by multi-modal capturing techniques. We discuss the modeling and simulation of interacting participants in a virtual meeting room, we discuss how remote meeting participants can take part in meeting activities and they have some observations on translating research results to smart home environments

    Towards FollowMe User Profiles for Macro Intelligent Environments

    Get PDF
    We envision an Ambient Intelligent Environment as an environment with technology embedded within the framework of that environment to help enhance an users experience in that environment. Existing implementations , while working effectively, are themselves an expensive and time consuming investment. Applying the same expertise to an environment on a monolithic scale is very inefficient, and thus, will require a different approach. In this paper, we present this problem, propose theoretical solutions that would solve this problem, with the guise of experimentally verifying and comparing these approaches, as well as a formal method to model the entire scenario

    Meetings and Meeting Modeling in Smart Environments

    Get PDF
    In this paper we survey our research on smart meeting rooms and its relevance for augmented reality meeting support and virtual reality generation of meetings in real time or off-line. The research reported here forms part of the European 5th and 6th framework programme projects multi-modal meeting manager (M4) and augmented multi-party interaction (AMI). Both projects aim at building a smart meeting environment that is able to collect multimodal captures of the activities and discussions in a meeting room, with the aim to use this information as input to tools that allow real-time support, browsing, retrieval and summarization of meetings. Our aim is to research (semantic) representations of what takes place during meetings in order to allow generation, e.g. in virtual reality, of meeting activities (discussions, presentations, voting, etc.). Being able to do so also allows us to look at tools that provide support during a meeting and at tools that allow those not able to be physically present during a meeting to take part in a virtual way. This may lead to situations where the differences between real meeting participants, human-controlled virtual participants and (semi-) autonomous virtual participants disappear

    Living Innovation Laboratory Model Design and Implementation

    Full text link
    Living Innovation Laboratory (LIL) is an open and recyclable way for multidisciplinary researchers to remote control resources and co-develop user centered projects. In the past few years, there were several papers about LIL published and trying to discuss and define the model and architecture of LIL. People all acknowledge about the three characteristics of LIL: user centered, co-creation, and context aware, which make it distinguished from test platform and other innovation approaches. Its existing model consists of five phases: initialization, preparation, formation, development, and evaluation. Goal Net is a goal-oriented methodology to formularize a progress. In this thesis, Goal Net is adopted to subtract a detailed and systemic methodology for LIL. LIL Goal Net Model breaks the five phases of LIL into more detailed steps. Big data, crowd sourcing, crowd funding and crowd testing take place in suitable steps to realize UUI, MCC and PCA throughout the innovation process in LIL 2.0. It would become a guideline for any company or organization to develop a project in the form of an LIL 2.0 project. To prove the feasibility of LIL Goal Net Model, it was applied to two real cases. One project is a Kinect game and the other one is an Internet product. They were both transformed to LIL 2.0 successfully, based on LIL goal net based methodology. The two projects were evaluated by phenomenography, which was a qualitative research method to study human experiences and their relations in hope of finding the better way to improve human experiences. Through phenomenographic study, the positive evaluation results showed that the new generation of LIL had more advantages in terms of effectiveness and efficiency.Comment: This is a book draf

    Social Intelligence Design for Mediated Communication

    Get PDF
    Without abstract

    Pro-active Meeting Assistants : Attention Please!

    Get PDF
    This paper gives an overview of pro-active meeting assistants, what they are and when they can be useful. We explain how to develop such assistants with respect to requirement definitions and elaborate on a set of Wizard of Oz experiments, aiming to find out in which form a meeting assistant should operate to be accepted by participants and whether the meeting effectiveness and efficiency can be improved by an assistant at all

    Eco‐Holonic 4.0 Circular Business Model to  Conceptualize Sustainable Value Chain Towards  Digital Transition 

    Get PDF
    The purpose of this paper is to conceptualize a circular business model based on an Eco-Holonic Architecture, through the integration of circular economy and holonic principles. A conceptual model is developed to manage the complexity of integrating circular economy principles, digital transformation, and tools and frameworks for sustainability into business models. The proposed architecture is multilevel and multiscale in order to achieve the instantiation of the sustainable value chain in any territory. The architecture promotes the incorporation of circular economy and holonic principles into new circular business models. This integrated perspective of business model can support the design and upgrade of the manufacturing companies in their respective industrial sectors. The conceptual model proposed is based on activity theory that considers the interactions between technical and social systems and allows the mitigation of the metabolic rift that exists between natural and social metabolism. This study contributes to the existing literature on circular economy, circular business models and activity theory by considering holonic paradigm concerns, which have not been explored yet. This research also offers a unique holonic architecture of circular business model by considering different levels, relationships, dynamism and contextualization (territory) aspects
    corecore