34,418 research outputs found

    Issues about the Adoption of Formal Methods for Dependable Composition of Web Services

    Full text link
    Web Services provide interoperable mechanisms for describing, locating and invoking services over the Internet; composition further enables to build complex services out of simpler ones for complex B2B applications. While current studies on these topics are mostly focused - from the technical viewpoint - on standards and protocols, this paper investigates the adoption of formal methods, especially for composition. We logically classify and analyze three different (but interconnected) kinds of important issues towards this goal, namely foundations, verification and extensions. The aim of this work is to individuate the proper questions on the adoption of formal methods for dependable composition of Web Services, not necessarily to find the optimal answers. Nevertheless, we still try to propose some tentative answers based on our proposal for a composition calculus, which we hope can animate a proper discussion

    Balancing the Communication Load of Asynchronously Parallelized Machine Learning Algorithms

    Full text link
    Stochastic Gradient Descent (SGD) is the standard numerical method used to solve the core optimization problem for the vast majority of machine learning (ML) algorithms. In the context of large scale learning, as utilized by many Big Data applications, efficient parallelization of SGD is in the focus of active research. Recently, we were able to show that the asynchronous communication paradigm can be applied to achieve a fast and scalable parallelization of SGD. Asynchronous Stochastic Gradient Descent (ASGD) outperforms other, mostly MapReduce based, parallel algorithms solving large scale machine learning problems. In this paper, we investigate the impact of asynchronous communication frequency and message size on the performance of ASGD applied to large scale ML on HTC cluster and cloud environments. We introduce a novel algorithm for the automatic balancing of the asynchronous communication load, which allows to adapt ASGD to changing network bandwidths and latencies.Comment: arXiv admin note: substantial text overlap with arXiv:1505.0495

    Anticipating Visual Representations from Unlabeled Video

    Full text link
    Anticipating actions and objects before they start or appear is a difficult problem in computer vision with several real-world applications. This task is challenging partly because it requires leveraging extensive knowledge of the world that is difficult to write down. We believe that a promising resource for efficiently learning this knowledge is through readily available unlabeled video. We present a framework that capitalizes on temporal structure in unlabeled video to learn to anticipate human actions and objects. The key idea behind our approach is that we can train deep networks to predict the visual representation of images in the future. Visual representations are a promising prediction target because they encode images at a higher semantic level than pixels yet are automatic to compute. We then apply recognition algorithms on our predicted representation to anticipate objects and actions. We experimentally validate this idea on two datasets, anticipating actions one second in the future and objects five seconds in the future.Comment: CVPR 201

    Asynchronous Parallel Stochastic Gradient Descent - A Numeric Core for Scalable Distributed Machine Learning Algorithms

    Full text link
    The implementation of a vast majority of machine learning (ML) algorithms boils down to solving a numerical optimization problem. In this context, Stochastic Gradient Descent (SGD) methods have long proven to provide good results, both in terms of convergence and accuracy. Recently, several parallelization approaches have been proposed in order to scale SGD to solve very large ML problems. At their core, most of these approaches are following a map-reduce scheme. This paper presents a novel parallel updating algorithm for SGD, which utilizes the asynchronous single-sided communication paradigm. Compared to existing methods, Asynchronous Parallel Stochastic Gradient Descent (ASGD) provides faster (or at least equal) convergence, close to linear scaling and stable accuracy

    Fast Matrix Factorization for Online Recommendation with Implicit Feedback

    Full text link
    This paper contributes improvements on both the effectiveness and efficiency of Matrix Factorization (MF) methods for implicit feedback. We highlight two critical issues of existing works. First, due to the large space of unobserved feedback, most existing works resort to assign a uniform weight to the missing data to reduce computational complexity. However, such a uniform assumption is invalid in real-world settings. Second, most methods are also designed in an offline setting and fail to keep up with the dynamic nature of online data. We address the above two issues in learning MF models from implicit feedback. We first propose to weight the missing data based on item popularity, which is more effective and flexible than the uniform-weight assumption. However, such a non-uniform weighting poses efficiency challenge in learning the model. To address this, we specifically design a new learning algorithm based on the element-wise Alternating Least Squares (eALS) technique, for efficiently optimizing a MF model with variably-weighted missing data. We exploit this efficiency to then seamlessly devise an incremental update strategy that instantly refreshes a MF model given new feedback. Through comprehensive experiments on two public datasets in both offline and online protocols, we show that our eALS method consistently outperforms state-of-the-art implicit MF methods. Our implementation is available at https://github.com/hexiangnan/sigir16-eals.Comment: 10 pages, 8 figure
    corecore