Stochastic Gradient Descent (SGD) is the standard numerical method used to
solve the core optimization problem for the vast majority of machine learning
(ML) algorithms. In the context of large scale learning, as utilized by many
Big Data applications, efficient parallelization of SGD is in the focus of
active research. Recently, we were able to show that the asynchronous
communication paradigm can be applied to achieve a fast and scalable
parallelization of SGD. Asynchronous Stochastic Gradient Descent (ASGD)
outperforms other, mostly MapReduce based, parallel algorithms solving large
scale machine learning problems. In this paper, we investigate the impact of
asynchronous communication frequency and message size on the performance of
ASGD applied to large scale ML on HTC cluster and cloud environments. We
introduce a novel algorithm for the automatic balancing of the asynchronous
communication load, which allows to adapt ASGD to changing network bandwidths
and latencies.Comment: arXiv admin note: substantial text overlap with arXiv:1505.0495