284 research outputs found

    Towards Realizability Checking of Contracts using Theories

    Full text link
    Virtual integration techniques focus on building architectural models of systems that can be analyzed early in the design cycle to try to lower cost, reduce risk, and improve quality of complex embedded systems. Given appropriate architectural descriptions and compositional reasoning rules, these techniques can be used to prove important safety properties about the architecture prior to system construction. Such proofs build from "leaf-level" assume/guarantee component contracts through architectural layers towards top-level safety properties. The proofs are built upon the premise that each leaf-level component contract is realizable; i.e., it is possible to construct a component such that for any input allowed by the contract assumptions, there is some output value that the component can produce that satisfies the contract guarantees. Without engineering support it is all too easy to write leaf-level components that can't be realized. Realizability checking for propositional contracts has been well-studied for many years, both for component synthesis and checking correctness of temporal logic requirements. However, checking realizability for contracts involving infinite theories is still an open problem. In this paper, we describe a new approach for checking realizability of contracts involving theories and demonstrate its usefulness on several examples.Comment: 15 pages, to appear in NASA Formal Methods (NFM) 201

    Machine-Checked Proofs For Realizability Checking Algorithms

    Full text link
    Virtual integration techniques focus on building architectural models of systems that can be analyzed early in the design cycle to try to lower cost, reduce risk, and improve quality of complex embedded systems. Given appropriate architectural descriptions, assume/guarantee contracts, and compositional reasoning rules, these techniques can be used to prove important safety properties about the architecture prior to system construction. For these proofs to be meaningful, each leaf-level component contract must be realizable; i.e., it is possible to construct a component such that for any input allowed by the contract assumptions, there is some output value that the component can produce that satisfies the contract guarantees. We have recently proposed (in [1]) a contract-based realizability checking algorithm for assume/guarantee contracts over infinite theories supported by SMT solvers such as linear integer/real arithmetic and uninterpreted functions. In that work, we used an SMT solver and an algorithm similar to k-induction to establish the realizability of a contract, and justified our approach via a hand proof. Given the central importance of realizability to our virtual integration approach, we wanted additional confidence that our approach was sound. This paper describes a complete formalization of the approach in the Coq proof and specification language. During formalization, we found several small mistakes and missing assumptions in our reasoning. Although these did not compromise the correctness of the algorithm used in the checking tools, they point to the value of machine-checked formalization. In addition, we believe this is the first machine-checked formalization for a realizability algorithm.Comment: 14 pages, 1 figur

    Validity-Guided Synthesis of Reactive Systems from Assume-Guarantee Contracts

    Full text link
    Automated synthesis of reactive systems from specifications has been a topic of research for decades. Recently, a variety of approaches have been proposed to extend synthesis of reactive systems from proposi- tional specifications towards specifications over rich theories. We propose a novel, completely automated approach to program synthesis which reduces the problem to deciding the validity of a set of forall-exists formulas. In spirit of IC3 / PDR, our problem space is recursively refined by blocking out regions of unsafe states, aiming to discover a fixpoint that describes safe reactions. If such a fixpoint is found, we construct a witness that is directly translated into an implementation. We implemented the algorithm on top of the JKind model checker, and exercised it against contracts written using the Lustre specification language. Experimental results show how the new algorithm outperforms JKinds already existing synthesis procedure based on k-induction and addresses soundness issues in the k-inductive approach with respect to unrealizable results.Comment: 18 pages, 5 figures, 2 table

    Requirements Analysis of a Quad-Redundant Flight Control System

    Full text link
    In this paper we detail our effort to formalize and prove requirements for the Quad-redundant Flight Control System (QFCS) within NASA's Transport Class Model (TCM). We use a compositional approach with assume-guarantee contracts that correspond to the requirements for software components embedded in an AADL system architecture model. This approach is designed to exploit the verification effort and artifacts that are already part of typical software verification processes in the avionics domain. Our approach is supported by an AADL annex that allows specification of contracts along with a tool, called AGREE, for performing compositional verification. The goal of this paper is to show the benefits of a compositional verification approach applied to a realistic avionics system and to demonstrate the effectiveness of the AGREE tool in performing this analysis.Comment: Accepted to NASA Formal Methods 201

    Smart Contract Synthesis Modulo Hyperproperties

    Full text link
    Smart contracts are small but highly security-critical programs that implement wallets, token systems, auctions, crowd funding systems, elections, and other multi-party transactions on the blockchain. A broad range of methods has been developed to ensure that a smart contract is functionally correct. However, smart contracts often additionally need to satisfy certain hyperproperties, such as symmetry, determinism, or an information flow policy. In this paper, we show how a synthesis method for smart contracts can ensure that the contract satisfies its desired hyperproperties. We build on top of a recently developed synthesis approach from specifications in the temporal logic TSL. We present HyperTSL, an extension of TSL for the specification of hyperproperties of infinite-state software. As a preprocessing step, we show how to detect if a hyperproperty has an equivalent formulation as a (simpler) trace property. Finally, we describe how to refine a synthesized contract to adhere to its HyperTSL specification.Comment: published at 36th IEEE Computer Security Foundations Symposium (CSF 2023

    Boolean Abstractions for Realizability Modulo Theories (Extended version)

    Full text link
    In this paper, we address the problem of the (reactive) realizability of specifications of theories richer than Booleans, including arithmetic theories. Our approach transforms theory specifications into purely Boolean specifications by (1) substituting theory literals by Boolean variables, and (2) computing an additional Boolean requirement that captures the dependencies between the new variables imposed by the literals. The resulting specification can be passed to existing Boolean off-the-shelf realizability tools, and is realizable if and only if the original specification is realizable. The first contribution is a brute-force version of our method, which requires a number of SMT queries that is doubly exponential in the number of input literals. Then, we present a faster method that exploits a nested encoding of the search for the extra requirement and uses SAT solving for faster traversing the search space and uses SMT queries internally. Another contribution is a prototype in Z3-Python. Finally, we report an empirical evaluation using specifications inspired in real industrial cases. To the best of our knowledge, this is the first method that succeeds in non-Boolean LTL realizability

    Layering Assume-Guarantee Contracts for Hierarchical System Design

    Get PDF
    Specifications for complex engineering systems are typically decomposed into specifications for individual subsystems in a manner that ensures they are implementable and simpler to develop further. We describe a method to algorithmically construct component specifications that implement a given specification when assembled. By eliminating variables that are irrelevant to realizability of each component, we simplify the specifications and reduce the amount of information necessary for operation. We parametrize the information flow between components by introducing parameters that select whether each variable is visible to a component. The decomposition algorithm identifies which variables can be hidden while preserving realizability and ensuring correct composition, and these are eliminated from component specifications by quantification and conversion of binary decision diagrams to formulas. The resulting specifications describe component viewpoints with full information with respect to the remaining variables, which is essential for tractable algorithmic synthesis of implementations. The specifications are written in TLA + , with liveness properties restricted to an implication of conjoined recurrence properties, known as GR(1). We define an operator for forming open systems from closed systems, based on a variant of the “while-plus” operator. This operator simplifies the writing of specifications that are realizable without being vacuous. To convert the generated specifications from binary decision diagrams to readable formulas over integer variables, we symbolically solve a minimal covering problem. We show with examples how the method can be applied to obtain contracts that formalize the hierarchical structure of system design

    Logical methods for the hierarchy of hyperlogics

    Get PDF
    In this thesis, we develop logical methods for reasoning about hyperproperties. Hyperproperties describe relations between multiple executions of a system. Unlike trace properties, hyperproperties comprise relational properties like noninterference, symmetry, and robustness. While trace properties have been studied extensively, hyperproperties form a relatively new concept that is far from fully understood. We study the expressiveness of various hyperlogics and develop algorithms for their satisfiability and synthesis problems. In the first part, we explore the landscape of hyperlogics based on temporal logics, first-order and second-order logics, and logics with team semantics. We establish that first-order/second-order and temporal hyperlogics span a hierarchy of expressiveness, whereas team logics constitute a radically different way of specifying hyperproperties. Furthermore, we introduce the notion of temporal safety and liveness, from which we obtain fragments of HyperLTL (the most prominent hyperlogic) with a simpler satisfiability problem. In the second part, we develop logics and algorithms for the synthesis of smart contracts. We introduce two extensions of temporal stream logic to express (hyper)properties of infinite-state systems. We study the realizability problem of these logics and define approximations of the problem in LTL and HyperLTL. Based on these approximations, we develop algorithms to construct smart contracts directly from their specifications.In dieser Arbeit beschreiben wir logische Methoden, um über Hypereigenschaften zu argumentieren. Hypereigenschaften beschreiben Relationen zwischen mehreren Ausführungen eines Systems. Anders als pfadbasierte Eigenschaften können Hypereigenschaften relationale Eigenschaften wie Symmetrie, Robustheit und die Abwesenheit von Informationsfluss ausdrücken. Während pfadbasierte Eigenschaften in den letzten Jahrzehnten ausführlich erforscht wurden, sind Hypereigenschaften ein relativ neues Konzept, das wir noch nicht vollständig verstehen. Wir untersuchen die Ausdrucksmächtigkeit verschiedener Hyperlogiken und entwickeln ausführbare Algorithmen, um deren Erfüllbarkeits- und Syntheseproblem zu lösen. Im ersten Teil erforschen wir die Landschaft der Hyperlogiken basierend auf temporalen Logiken, Logiken erster und zweiter Ordnung und Logiken mit Teamsemantik. Wir stellen fest, dass temporale Logiken und Logiken erster und zweiter Ordnung eine Hierarchie an Ausdrucksmächtigkeit aufspannen. Teamlogiken hingegen spezifieren Hypereigenschaften auf eine radikal andere Art. Wir führen außerdem das Konzept von temporalen Sicherheits- und Lebendigkeitseigenschaften ein, durch die Fragmente der bedeutensten Logik HyperLTL entstehen, für die das Erfüllbarkeitsproblem einfacher ist. Im zweiten Teil entwickeln wir Logiken und Algorithmen für die Synthese digitaler Verträge. Wir führen zwei Erweiterungen temporaler Stromlogik ein, um (Hyper)eigenschaften in unendlichen Systemen auszudrücken. Wir untersuchen das Realisierungsproblem dieser Logiken und definieren Approximationen des Problems in LTL und HyperLTL. Basierend auf diesen Approximationen entwickeln wir Algorithmen, die digitale Verträge direkt aus einer Spezifikation erstellen
    corecore