17,365 research outputs found

    Set-based approach to passenger aircraft family design

    Get PDF
    Presented is a method for the design of passenger aircraft families. Existing point-based methods found in the literature employ sequential approaches in which a single design solution is selected early and is then iteratively modified until all requirements are satisfied. The challenge with such approaches is that the design is driven toward a solution that, although promising to the optimizer, may be infeasible due to factors not considered by the models. The proposed method generates multiple solutions at the outset. Then, the infeasible solutions are discarded gradually through constraint satisfaction and set intersection. The method has been evaluated through a notional example of a three-member aircraft family design. The conclusion is that point-based design is still seen as preferable for incremental (conventional) designs based on a wealth of validated empirical methods, whereas the proposed approach, although resource-intensive, is seen as more suited to innovative designs

    Efficiently Generating Geometric Inhomogeneous and Hyperbolic Random Graphs

    Get PDF
    Hyperbolic random graphs (HRG) and geometric inhomogeneous random graphs (GIRG) are two similar generative network models that were designed to resemble complex real world networks. In particular, they have a power-law degree distribution with controllable exponent beta, and high clustering that can be controlled via the temperature T. We present the first implementation of an efficient GIRG generator running in expected linear time. Besides varying temperatures, it also supports underlying geometries of higher dimensions. It is capable of generating graphs with ten million edges in under a second on commodity hardware. The algorithm can be adapted to HRGs. Our resulting implementation is the fastest sequential HRG generator, despite the fact that we support non-zero temperatures. Though non-zero temperatures are crucial for many applications, most existing generators are restricted to T = 0. We also support parallelization, although this is not the focus of this paper. Moreover, we note that our generators draw from the correct probability distribution, i.e., they involve no approximation. Besides the generators themselves, we also provide an efficient algorithm to determine the non-trivial dependency between the average degree of the resulting graph and the input parameters of the GIRG model. This makes it possible to specify the desired expected average degree as input. Moreover, we investigate the differences between HRGs and GIRGs, shedding new light on the nature of the relation between the two models. Although HRGs represent, in a certain sense, a special case of the GIRG model, we find that a straight-forward inclusion does not hold in practice. However, the difference is negligible for most use cases

    Automatic domain ontology extraction for context-sensitive opinion mining

    Get PDF
    Automated analysis of the sentiments presented in online consumer feedbacks can facilitate both organizations’ business strategy development and individual consumers’ comparison shopping. Nevertheless, existing opinion mining methods either adopt a context-free sentiment classification approach or rely on a large number of manually annotated training examples to perform context sensitive sentiment classification. Guided by the design science research methodology, we illustrate the design, development, and evaluation of a novel fuzzy domain ontology based contextsensitive opinion mining system. Our novel ontology extraction mechanism underpinned by a variant of Kullback-Leibler divergence can automatically acquire contextual sentiment knowledge across various product domains to improve the sentiment analysis processes. Evaluated based on a benchmark dataset and real consumer reviews collected from Amazon.com, our system shows remarkable performance improvement over the context-free baseline

    Solving, Estimating and Selecting Nonlinear Dynamic Economic Models without the Curse of Dimensionality

    Get PDF
    A welfare analysis of a risky policy is impossible within a linear or linearized model and its certainty equivalence property. The presented algorithms are designed as a toolbox for a general model class. The computational challenges are considerable and I concentrate on the numerics and statistics for a simple model of dynamic consumption and labor choice. I calculate the optimal policy and estimate the posterior density of structural parameters and the marginal likelihood within a nonlinear state space model. My approach is even in an interpreted language twenty time faster than the only alternative compiled approach. The model is estimated on simulated data in order to test the routines against known true parameters. The policy function is approximated by Smolyak Chebyshev polynomials and the rational expectation integral by Smolyak Gaussian quadrature. The Smolyak operator is used to extend univariate approximation and integration operators to many dimensions. It reduces the curse of dimensionality from exponential to polynomial growth. The likelihood integrals are evaluated by a Gaussian quadrature and Gaussian quadrature particle filter. The bootstrap or sequential importance resampling particle filter is used as an accuracy benchmark. The posterior is estimated by the Gaussian filter and a Metropolis- Hastings algorithm. I propose a genetic extension of the standard Metropolis-Hastings algorithm by parallel random walk sequences. This improves the robustness of start values and the global maximization properties. Moreover it simplifies a cluster implementation and the random walk variances decision is reduced to only two parameters so that almost no trial sequences are needed. Finally the marginal likelihood is calculated as a criterion for nonnested and quasi-true models in order to select between the nonlinear estimates and a first order perturbation solution combined with the Kalman filter.stochastic dynamic general equilibrium model, Chebyshev polynomials, Smolyak operator, nonlinear state space filter, Curse of Dimensionality, posterior of structural parameters, marginal likelihood

    A Technology Proposal for a Management Information System for the Director’s Office, NAL.

    Get PDF
    This technology proposal attempts in giving a viable solution for a Management Information System (MIS) for the Director's Office. In today's IT scenario, an Organization's success greatly depends on its ability to get accurate and timely data on its operations of varied nature and to manage this data effectively to guide its activities and meet its goals. To cater to the information needs of an Organization or an Office like the Director's Office, information systems are developed and deployed to gather and process data in ways that produce a variety of information to the end-user. MIS can therefore can be defined as an integrated user-machine system for providing information to support operations, management and decision-making functions in an Organization. The system in a nutshell, utilizes computer hardware and software, manual procedures, models for analysis planning, control and decision-making and a database. Using state-of-the-art front-end and back-end web based tools, this technology proposal attempts to provide a single-point Information Management, Information Storage, Information Querying and Information Retrieval interface to the Director and his office for handling all information traffic flow in and out of the Director's Office
    corecore