38 research outputs found

    Optimal Direct Sum Results for Deterministic and Randomized Decision Tree Complexity

    Full text link
    A Direct Sum Theorem holds in a model of computation, when solving some k input instances together is k times as expensive as solving one. We show that Direct Sum Theorems hold in the models of deterministic and randomized decision trees for all relations. We also note that a near optimal Direct Sum Theorem holds for quantum decision trees for boolean functions.Comment: 7 page

    The discrepancy of greater-than

    Full text link
    The discrepancy of the n×nn \times n greater-than matrix is shown to be π2lnn\frac{\pi}{2 \ln n} up to lower order terms

    A strong direct product theorem for quantum query complexity

    Full text link
    We show that quantum query complexity satisfies a strong direct product theorem. This means that computing kk copies of a function with less than kk times the quantum queries needed to compute one copy of the function implies that the overall success probability will be exponentially small in kk. For a boolean function ff we also show an XOR lemma---computing the parity of kk copies of ff with less than kk times the queries needed for one copy implies that the advantage over random guessing will be exponentially small. We do this by showing that the multiplicative adversary method, which inherently satisfies a strong direct product theorem, is always at least as large as the additive adversary method, which is known to characterize quantum query complexity.Comment: V2: 19 pages (various additions and improvements, in particular: improved parameters in the main theorems due to a finer analysis of the output condition, and addition of an XOR lemma and a threshold direct product theorem in the boolean case). V3: 19 pages (added grant information

    Simulation Theorems via Pseudorandom Properties

    Full text link
    We generalize the deterministic simulation theorem of Raz and McKenzie [RM99], to any gadget which satisfies certain hitting property. We prove that inner-product and gap-Hamming satisfy this property, and as a corollary we obtain deterministic simulation theorem for these gadgets, where the gadget's input-size is logarithmic in the input-size of the outer function. This answers an open question posed by G\"{o}\"{o}s, Pitassi and Watson [GPW15]. Our result also implies the previous results for the Indexing gadget, with better parameters than was previously known. A preliminary version of the results obtained in this work appeared in [CKL+17]

    Query-to-Communication Lifting for BPP

    Full text link
    For any nn-bit boolean function ff, we show that the randomized communication complexity of the composed function fgnf\circ g^n, where gg is an index gadget, is characterized by the randomized decision tree complexity of ff. In particular, this means that many query complexity separations involving randomized models (e.g., classical vs. quantum) automatically imply analogous separations in communication complexity.Comment: 21 page
    corecore