15 research outputs found

    IRHDF: Iris Recognition using Hybrid Domain Features

    Get PDF
    Iris Biometric is a unique physiological noninvasive trait of human beings that remains stable over a person's life. In this paper, we propose an Iris Recognition using Hybrid Domain Features (IRHDF) as Dual Tree Complex Wavelet Transform (DTCWT) and Over Lapping Local Binary Pattern (OLBP). An eye is preprocessed to extract the complex wavelet features to obtain the Region of Interest (ROI) area from an iris. OLBP is further applied on ROI to generate features of magnitude coefficients. Resultant features are generated by fusion of DTCWT and OLBP using arithmetic addition. Euclidean Distance (ED) is used to match the test iris image with database iris features to recognize a person. We observe that the values of Equal Error Rate (EER) and Total Success Rate (TSR) are better than in [7]

    Effective segmentation of sclera, iris and pupil in noisy eye images

    Get PDF
    In today’s sensitive environment, for personal authentication, iris recognition is the most attentive technique among the various biometric technologies. One of the key steps in the iris recognition system is the accurate iris segmentation from its surrounding noises including pupil and sclera of a captured eye-image. In our proposed method, initially input image is preprocessed by using bilateral filtering. After the preprocessing of images contour based features such as, brightness, color and texture features are extracted. Then entropy is measured based on the extracted contour based features to effectively distinguishing the data in the images. Finally, the convolution neural network (CNN) is used for the effective sclera, iris and pupil parts segmentations based on the entropy measure. The proposed results are analyzed to demonstrate the better performance of the proposed segmentation method than the existing methods.

    IRDO: Iris Recognition by Fusion of DTCWT and OLBP

    Get PDF
    Iris Biometric is a physiological trait of human beings. In this paper, we propose Iris an Recognition using Fusion of Dual Tree Complex Wavelet Transform (DTCWT) and Over Lapping Local Binary Pattern (OLBP) Features. An eye is preprocessed to extract the iris part and obtain the Region of Interest (ROI) area from an iris. The complex wavelet features are extracted for region from the Iris DTCWT. OLBP is further applied on ROI to generate features of magnitude coefficients. The resultant features are generated by fusing DTCWT and OLBP using arithmetic addition. The Euclidean Distance (ED) is used to compare test iris with database iris features to identify a person. It is observed that the values of Total Success Rate (TSR) and Equal Error Rate (EER) are better in the case of proposed IRDO compared to the state-of-the art technique

    Fusion Iris and Periocular Recognitions in Non-Cooperative Environment

    Get PDF
    The performance of iris recognition in non-cooperative environment can be negatively impacted when the resolution of the iris images is low which results in failure to determine the eye center, limbic and pupillary boundary of the iris segmentation. Hence, a combination with periocular features is suggested to increase the authenticity of the recognition system. However, the texture feature of periocular can be easily affected by a background complication while the colour feature of periocular is still limited to spatial information and quantization effects. This happens due to different distances between the sensor and the subject during the iris acquisition stage as well as image size and orientation. The proposed method of periocular feature extraction consists of a combination of rotation invariant uniform local binary pattern to select the texture features and a method of color moment to select the color features. Besides, a hue-saturation-value channel is selected to avoid loss of discriminative information in the eye image. The proposed method which consists of combination between texture and colour features provides the highest accuracy for the periocular recognition with more than 71.5% for the UBIRIS.v2 dataset and 85.7% for the UBIPr dataset. For the fusion recognitions, the proposed method achieved the highest accuracy with more than 85.9% for the UBIRIS.v2 dataset and 89.7% for the UBIPr dataset

    Deep Neural Network and Data Augmentation Methodology for off-axis iris segmentation in wearable headsets

    Full text link
    A data augmentation methodology is presented and applied to generate a large dataset of off-axis iris regions and train a low-complexity deep neural network. Although of low complexity the resulting network achieves a high level of accuracy in iris region segmentation for challenging off-axis eye-patches. Interestingly, this network is also shown to achieve high levels of performance for regular, frontal, segmentation of iris regions, comparing favorably with state-of-the-art techniques of significantly higher complexity. Due to its lower complexity, this network is well suited for deployment in embedded applications such as augmented and mixed reality headsets

    Elliptical higher-order-spectra periocular code

    Get PDF
    The periocular region has recently emerged as a standalone biometric trait, promising attractive trade-off between the iris alone and the entire face, especially for cases where neither the iris nor a full facial image can be acquired. This advantage provides another dimension for implementing a robust biometric system, performed in non-ideal conditions. Global features (LBP, HOG) and local features (SIFT) have been introduced; however, the performance of these features can deteriorate for images captured in unconstrained and less-cooperative conditions. A particular set of Higher Order Spectral (HOS) features have been proved to be invariant to translation, scale, rotation, brightness level shift and contrast change. These properties are desirable in the periocular recognition problem to deal with the non-ideal imaging conditions. This paper investigates the HOS features in different configurations for the periocular recognition problem under non-ideal conditions. Especially, we introduce a new sampling approach for the periocular region based on an elliptical coordinate. This non-linear sampling approach is then combined with the robustness of the HOS features for encoding the periocular region. In addition, we also propose a new technique for combining left and right periocular. The proposed feature-level fusion approach bases on state-of-the-art bilinear pooling technique to allow efficient interaction between the features of both perioculars. We show the validity of the proposed approach in encoding discriminant features, outperforming or comparing favorably with the state-of-the-art features on the two popular datasets: FRGC and JAFFE

    A framework for biometric recognition using non-ideal iris and face

    Get PDF
    Off-angle iris images are often captured in a non-cooperative environment. The distortion of the iris or pupil can decrease the segmentation quality as well as the data extracted thereafter. Moreover, iris with an off-angle of more than 30° can have non-recoverable features since the boundary cannot be properly localized. This usually becomes a factor of limited discriminant ability of the biometric features. Limitations also come from the noisy data arisen due to image burst, background error, or inappropriate camera pixel noise. To address the issues above, the aim of this study is to develop a framework which: (1) to improve the non-circular boundary localization, (2) to overcome the lost features, and (3) to detect and minimize the error caused by noisy data. Non-circular boundary issue is addressed through a combination of geometric calibration and direct least square ellipse that can geometrically restore, adjust, and scale up the distortion of circular shape to ellipse fitting. Further improvement comes in the form of an extraction method that combines Haar Wavelet and Neural Network to transform the iris features into wavelet coefficient representative of the relevant iris data. The non-recoverable features problem is resolved by proposing Weighted Score Level Fusion which integrates face and iris biometrics. This enhancement is done to give extra distinctive information to increase authentication accuracy rate. As for the noisy data issues, a modified Reed Solomon codes with error correction capability is proposed to decrease intra-class variations by eliminating the differences between enrollment and verification templates. The key contribution of this research is a new unified framework for high performance multimodal biometric recognition system. The framework has been tested with WVU, UBIRIS v.2, UTMIFM, ORL datasets, and achieved more than 99.8% accuracy compared to other existing methods
    corecore