2 research outputs found

    Real-Time Trajectory Generation and Control of a Semi-Omnidirectional Mobile Robot

    Get PDF
    When controlling a wheeled mobile robot with four independently steerable driving wheels, the control of the wheel coordination must be handled. Both the direction and velocity of the wheels must be coordinated to allow for proper operation of the robot. The focus of this work is on the coordination of the wheel directions. Such coordination is mostly done by solving constraint equations of the system kinematics, but when the demands on the coordination are high, it is sometimes necessary to include the steering dynamics in the coordination control. With dynamics included the complexity of the wheel coordination increases, since constraints dependent on required angle changes and current velocities must be fulfilled. By calculating the dynamic limitations in each control cycle, the steering limit for the whole wheel base within the current control cycle can be found. With use of such wheel base limit, followable and coordinated wheel trajectories can be generated online. This thesis includes the construction of a dynamic model for inclusion of the steering dynamic limitations affecting the performance the most, the construction of the online trajectory generation idea, as well as implementation and validation on the real target wheeled mobile robot platform
    corecore