6 research outputs found

    Publishing H2O pluglets in UDDI registries

    Get PDF
    Interoperability and standards, such as Grid Services are a focus of current Grid research. The intent is to facilitate resource virtualization, and to accommodate the intrinsic heterogeneity of resources in distributed environments. It is important that new and emerging metacomputing frameworks conform to these standards, in order to ensure interoperability with other grid solutions. In particular, the H2O metacomputing system offers several benefits, including lightweight operation, user-configurability, and selectable security levels. Its applicability would be enhanced even further through support for grid services and OGSA compliance. Code deployed into the H2O execution containers is referred to as pluglets. These pluglets constitute the end points of services in H2O, services that are to be made known through publication in a registry. In this contribution, we discuss a system pluglet, referred to as OGSAPluglet, that scans H2O execution containers for available services and publishes them into one or more UDDI registries. We also discuss in detail the algorithms that manage the publication of the appropriate WSDL and GSDL documents for the registration process

    Cooperative fault-tolerant distributed computing U.S. Department of Energy Grant DE-FG02-02ER25537 Final Report

    Full text link

    Applications Development for the Computational Grid

    Get PDF

    On the construction of decentralised service-oriented orchestration systems

    Get PDF
    Modern science relies on workflow technology to capture, process, and analyse data obtained from scientific instruments. Scientific workflows are precise descriptions of experiments in which multiple computational tasks are coordinated based on the dataflows between them. Orchestrating scientific workflows presents a significant research challenge: they are typically executed in a manner such that all data pass through a centralised computer server known as the engine, which causes unnecessary network traffic that leads to a performance bottleneck. These workflows are commonly composed of services that perform computation over geographically distributed resources, and involve the management of dataflows between them. Centralised orchestration is clearly not a scalable approach for coordinating services dispersed across distant geographical locations. This thesis presents a scalable decentralised service-oriented orchestration system that relies on a high-level data coordination language for the specification and execution of workflows. This system’s architecture consists of distributed engines, each of which is responsible for executing part of the overall workflow. It exploits parallelism in the workflow by decomposing it into smaller sub-workflows, and determines the most appropriate engines to execute them using computation placement analysis. This permits the workflow logic to be distributed closer to the services providing the data for execution, which reduces the overall data transfer in the workflow and improves its execution time. This thesis provides an evaluation of the presented system which concludes that decentralised orchestration provides scalability benefits over centralised orchestration, and improves the overall performance of executing a service-oriented workflow
    corecore