13,572 research outputs found

    An experiment with ontology mapping using concept similarity

    Get PDF
    This paper describes a system for automatically mapping between concepts in different ontologies. The motivation for the research stems from the Diogene project, in which the project's own ontology covering the ICT domain is mapped to external ontologies, in order that their associated content can automatically be included in the Diogene system. An approach involving measuring the similarity of concepts is introduced, in which standard Information Retrieval indexing techniques are applied to concept descriptions. A matrix representing the similarity of concepts in two ontologies is generated, and a mapping is performed based on two parameters: the domain coverage of the ontologies, and their levels of granularity. Finally, some initial experimentation is presented which suggests that our approach meets the project's unique set of requirements

    Towards a fuzzy domain ontology extraction method for adaptive e-learning

    Get PDF
    With the widespread applications of electronic learning (e-Learning) technologies to education at all levels, increasing number of online educational resources and messages are generated from the corresponding e-Learning environments. Nevertheless, it is quite difficult, if not totally impossible, for instructors to read through and analyze the online messages to predict the progress of their students on the fly. The main contribution of this paper is the illustration of a novel concept map generation mechanism which is underpinned by a fuzzy domain ontology extraction algorithm. The proposed mechanism can automatically construct concept maps based on the messages posted to online discussion forums. By browsing the concept maps, instructors can quickly identify the progress of their students and adjust the pedagogical sequence on the fly. Our initial experimental results reveal that the accuracy and the quality of the automatically generated concept maps are promising. Our research work opens the door to the development and application of intelligent software tools to enhance e-Learning

    Continuous Improvement Through Knowledge-Guided Analysis in Experience Feedback

    Get PDF
    Continuous improvement in industrial processes is increasingly a key element of competitiveness for industrial systems. The management of experience feedback in this framework is designed to build, analyze and facilitate the knowledge sharing among problem solving practitioners of an organization in order to improve processes and products achievement. During Problem Solving Processes, the intellectual investment of experts is often considerable and the opportunities for expert knowledge exploitation are numerous: decision making, problem solving under uncertainty, and expert configuration. In this paper, our contribution relates to the structuring of a cognitive experience feedback framework, which allows a flexible exploitation of expert knowledge during Problem Solving Processes and a reuse such collected experience. To that purpose, the proposed approach uses the general principles of root cause analysis for identifying the root causes of problems or events, the conceptual graphs formalism for the semantic conceptualization of the domain vocabulary and the Transferable Belief Model for the fusion of information from different sources. The underlying formal reasoning mechanisms (logic-based semantics) in conceptual graphs enable intelligent information retrieval for the effective exploitation of lessons learned from past projects. An example will illustrate the application of the proposed approach of experience feedback processes formalization in the transport industry sector

    An ontology enhanced parallel SVM for scalable spam filter training

    Get PDF
    This is the post-print version of the final paper published in Neurocomputing. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2013 Elsevier B.V.Spam, under a variety of shapes and forms, continues to inflict increased damage. Varying approaches including Support Vector Machine (SVM) techniques have been proposed for spam filter training and classification. However, SVM training is a computationally intensive process. This paper presents a MapReduce based parallel SVM algorithm for scalable spam filter training. By distributing, processing and optimizing the subsets of the training data across multiple participating computer nodes, the parallel SVM reduces the training time significantly. Ontology semantics are employed to minimize the impact of accuracy degradation when distributing the training data among a number of SVM classifiers. Experimental results show that ontology based augmentation improves the accuracy level of the parallel SVM beyond the original sequential counterpart

    Using concept similarity in cross ontology for adaptive e-Learning systems

    Get PDF
    Abstracte-Learning is one of the most preferred media of learning by the learners. The learners search the web to gather knowledge about a particular topic from the information in the repositories. Retrieval of relevant materials from a domain can be easily implemented if the information is organized and related in some way. Ontologies are a key concept that helps us to relate information for providing the more relevant lessons to the learner. This paper proposes an adaptive e-Learning system, which generates a user specific e-Learning content by comparing the concepts with more than one system using similarity measures. A cross ontology measure is defined, which consists of fuzzy domain ontology as the primary ontology and the domain expert’s ontology as the secondary ontology, for the comparison process. A personalized document is provided to the user with a user profile, which includes the data obtained from the processing of the proposed method under a User score, which is obtained through the user evaluation. The results of the proposed e-Learning system under the designed cross ontology similarity measure show a significant increase in performance and accuracy under different conditions. The assessment of the comparative analysis, showed the difference in performance of our proposed method over other methods. Based on the assessment results it is proved that the proposed approach is effective over other methods

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201
    corecore