88 research outputs found

    Climbing the Software Assurance Ladder - Practical Formal Verification for Reliable Software

    Get PDF
    There is a strong link between software quality and software reliability. By decreasing the probability of imperfection in the software, we can augment its reliability guarantees. At one extreme, software with one unknown bug is not reliable. At the other extreme, perfect software is fully reliable. Formal verification with SPARK has been used for years to get as close as possible to zero-defect software. We present the well-established processes surrounding the use of SPARK at Altran UK, as well as the deployment experiments performed at Thales to finetune the gradual insertion of formal verification techniques in existing processes. Experience of both long-term and new users helped us define adoption and usage guidelines for SPARK based on five levels of increasing assurance that map well with industrial needs in practice

    VerifyThis 2019:A Program Verification Competition (Extended Report)

    Get PDF
    VerifyThis is a series of program verification competitions that emphasize the human aspect: participants tackle the verification of detailed behavioral properties -- something that lies beyond the capabilities of fully automatic verification, and requires instead human expertise to suitably encode programs, specifications, and invariants. This paper describes the 8th edition of VerifyThis, which took place at ETAPS 2019 in Prague. Thirteen teams entered the competition, which consisted of three verification challenges and spanned two days of work. The report analyzes how the participating teams fared on these challenges, reflects on what makes a verification challenge more or less suitable for the typical VerifyThis participants, and outlines the difficulties of comparing the work of teams using wildly different verification approaches in a competition focused on the human aspect

    Verifying the Mathematical Library of an UAV Autopilot with Frama-C

    Get PDF
    Ensuring safety of critical systems is crucial and is often attained by extensive testing of the system. Formal methods are now commonly accepted as powerful tools to obtain guarantees on such systems, even if it is generally not possible to formally prove the safety and correctness of the whole system. This paper presents an ongoing work on the formal verification of the Paparazzi UAV autopilot using the Frama-C verification platform. We focus on a Paparazzi mathematical library providing different UAV state representations and associated conversion functions and manage to prove the absence of runtime errors in the library and some interesting functional properties on floating-point conversion functions

    Proceedings of the First NASA Formal Methods Symposium

    Get PDF
    Topics covered include: Model Checking - My 27-Year Quest to Overcome the State Explosion Problem; Applying Formal Methods to NASA Projects: Transition from Research to Practice; TLA+: Whence, Wherefore, and Whither; Formal Methods Applications in Air Transportation; Theorem Proving in Intel Hardware Design; Building a Formal Model of a Human-Interactive System: Insights into the Integration of Formal Methods and Human Factors Engineering; Model Checking for Autonomic Systems Specified with ASSL; A Game-Theoretic Approach to Branching Time Abstract-Check-Refine Process; Software Model Checking Without Source Code; Generalized Abstract Symbolic Summaries; A Comparative Study of Randomized Constraint Solvers for Random-Symbolic Testing; Component-Oriented Behavior Extraction for Autonomic System Design; Automated Verification of Design Patterns with LePUS3; A Module Language for Typing by Contracts; From Goal-Oriented Requirements to Event-B Specifications; Introduction of Virtualization Technology to Multi-Process Model Checking; Comparing Techniques for Certified Static Analysis; Towards a Framework for Generating Tests to Satisfy Complex Code Coverage in Java Pathfinder; jFuzz: A Concolic Whitebox Fuzzer for Java; Machine-Checkable Timed CSP; Stochastic Formal Correctness of Numerical Algorithms; Deductive Verification of Cryptographic Software; Coloured Petri Net Refinement Specification and Correctness Proof with Coq; Modeling Guidelines for Code Generation in the Railway Signaling Context; Tactical Synthesis Of Efficient Global Search Algorithms; Towards Co-Engineering Communicating Autonomous Cyber-Physical Systems; and Formal Methods for Automated Diagnosis of Autosub 6000

    Exploring annotations for deductive verification

    Get PDF

    On Provably Correct Decision-Making for Automated Driving

    Get PDF
    The introduction of driving automation in road vehicles can potentially reduce road traffic crashes and significantly improve road safety. Automation in road vehicles also brings several other benefits such as the possibility to provide independent mobility for people who cannot and/or should not drive. Many different hardware and software components (e.g. sensing, decision-making, actuation, and control) interact to solve the autonomous driving task. Correctness of such automated driving systems is crucial as incorrect behaviour may have catastrophic consequences. Autonomous vehicles operate in complex and dynamic environments, which requires decision-making and planning at different levels. The aim of such decision-making components in these systems is to make safe decisions at all times. The challenge of safety verification of these systems is crucial for the commercial deployment of full autonomy in vehicles. Testing for safety is expensive, impractical, and can never guarantee the absence of errors. In contrast, formal methods, which are techniques that use rigorous mathematical models to build hardware and software systems can provide a mathematical proof of the correctness of the system. The focus of this thesis is to address some of the challenges in the safety verification of decision-making in automated driving systems. A central question here is how to establish formal verification as an efficient tool for automated driving software development.A key finding is the need for an integrated formal approach to prove correctness and to provide a complete safety argument. This thesis provides insights into how three different formal verification approaches, namely supervisory control theory, model checking, and deductive verification differ in their application to automated driving and identifies the challenges associated with each method. It identifies the need for the introduction of more rigour in the requirement refinement process and presents one possible solution by using a formal model-based safety analysis approach. To address challenges in the manual modelling process, a possible solution by automatically learning formal models directly from code is proposed

    Комплексный подход системы C-lightVer к автоматизированной локализации ошибок в C-программах

    Get PDF
    The C-lightVer system for the deductive verification of C programs is being developed at the IIS SB RAS. Based on the two-level architecture of the system, the C-light input language is translated into the intermediate C-kernel language. The meta generator of the correctness conditions receives the C-kernel program and Hoare logic for the C-kernel as input. To solve the well-known problem of determining loop invariants, the definite iteration approach was chosen. The body of the definite iteration loop is executed once for each element of the finite dimensional data structure, and the inference rule for them uses the substitution operation rep, which represents the action of the cycle in symbolic form. Also, in our meta generator, the method of semantic markup of correctness conditions has been implemented and expanded. It allows to generate explanations for unproven conditions and simplifies the errors localization. Finally, if the theorem prover fails to determine the truth of the condition, we can focus on proving its falsity. Thus a method of proving the falsity of the correctness conditions in the ACL2 system was developed. The need for more detailed explanations of the correctness conditions containing the replacement operation rep has led to a change of the algorithms for generating the replacement operation, and the generation of explanations for unproven correctness conditions. Modifications of these algorithms are presented in the article. They allow marking rep definition with semantic labels, extracting semantic labels from rep definition and generating description of break execution condition.В ИСИ СО РАН разрабатывается система C-lightVer для дедуктивной верификации С-программ. Исходя из двухуровневой архитектуры системы, входной язык C-light транслируется в промежуточный язык C-kernel. Метагенератор условий корректности принимает на вход C-kernel программу и логику Хоара для C-kernel. Для решения известной проблемы задания инвариантов циклов выбран подход финитных итераций. Тело цикла финитной итерации исполняется один раз для каждого элемента структуры данных конечной размерности, а правило вывода для них использует операцию замены rep, выражающую действие цикла в символической форме. Также в нашем метагенераторе внедрен и расширен метод семантической разметки условий корректности. Он позволяет порождать пояснения для недоказанных условий и упрощает локализацию ошибок. Наконец, если система ACL2 не справляется с установлением истинности условия, можно сосредоточиться на доказательстве его ложности. Ранее нами был разработан способ доказательства ложности условий корректности для системы ACL2. Необходимость в более подробных объяснениях условий корректности, содержащих операцию замены rep, привела к изменению алгоритмов генерации операции замены, извлечения семантических меток и генерации объяснений недоказанных условий корректности. В статье представлены модификации данных алгоритмов. Эти изменения позволяют пометить исходный код функции rep семантическими метками, извлекать семантические метки из определения rep, а также генерировать описание условия исполнения инструкции break

    Formal Guaranties for Safety Critical Code Generation: the Case of Highly Variable Languages

    Get PDF
    Les fonctions de commande et de contrôle sont parmi les plus importantes des systèmes embarqués critiques utilisés dans des activités telles les transports, la santé ou la gestion de l’énergie. Leur impact potentiel sur la sûreté de fonctionnement fait de la vérification de leur correction l’un des points les plus critiques de leur développement. Cette vérification est usuellement effectuée en accord avec les normes de certification décrivant un ensemble d’objectifs à atteindre afin d’assurer un haut niveau de qualité du système et donc de prévenir l’apparition de défauts. Cette vérification du logiciel est traditionnellement basée sur de nombreux tests et des activitiés de relectures de code, toutefois les versions les plus récentes des standards de certification permettent l’utilisation de nouvelles approches de développement telles que l’ingénierie dirigée par les modèles et les méthodes formelles ainsi que l’utilisation d’outil pour assister les processus de développement. Les outils de génération automatique de code sont exploités dans la plupart des processus de développement de systèmes embarqués critiques afin d’éviter des erreurs de programmation liées à l’humain et pour assurer le respect des règles de production de code. Ces outils ayant pour vocation de remplacer les humains pour la production de code, des erreurs dans leur conception peuvent causer l’apparition d’erreurs dans le code généré. Il est donc nécessaire de vérifier que le niveau de qualité de l’outil est le même que celui du code produit en s’assurant que les objectifs spécifiées dans les normes de qualification sont couverts. Nos travaux visent à exploiter l’ingénierie dirigée par les modèles et les méthodes formelles pour développer ces outils et ainsi atteindre un niveau de qualité plus élevé que les approches traditionnelles. Les fonctions critiques de commande et de contrôle sont en grande partie conçues à l’aide de langages graphiques à flot de données. Ces langages sont utilisés pour modéliser des systèmes complexes à l’aide de blocs élémentaires groupés dans des librairies de blocs. Un bloc peut être un objet logiciel sophistiqué exposant une haute variabilité tant structurelle que sémantique. Cette variabilité est à la fois liée aux valeurs des paramètres du bloc ainsi qu’à son contexte d’utilisation. Dans notre travail, nous concentrons notre attention en premier lieu sur la spécification formelle de ces blocs ainsi que sur la vérification de ces spécifications. Nous avons évalué plusieurs approches et techniques dans le but d’assurer une spécification formelle, structurellement cohérente, vérifiable et réutilisable des blocs. Nous avons finalement conçu un langage basé sur l’ingénierie dirigées par les modèles dédié à cette tâche. Ce langage s’inspire des approches des lignes de produit logiciel afin d’assurer une gestion de la variabilité des blocs à la fois correcte et assurant un passage à l’échelle. Nous avons appliqué cette approche et la vérification associée sur quelques exemples choisis de blocs issus d’applications industrielles et l’avons validé sur des prototypes logiciels que nous avons développé. Les blocs sont les principaux éléments des langages d’entrée utilisés pour la génération automatique de logiciels de commande et de contrôle. Nous montrons comment les spécifications formelles de blocs peuvent être transformées en des annotations de code afin de simplifier et d’automatiser la vérification du code généré. Les annotations de code sont vérifiées par la suite à l’aide d’outils spécialisés d’analyse statique de code. En utilisant des observateur synchrones pour exprimer des exigences de haut niveau sur les modèles en entrée du générateur, nous montrons comment la spécification formelle de blocs peut être utilisée pour la génération d’annotations de code et par la suite pour la vérification automatique des exigences. Finalement, nous montrons dans quelle mesure les spécifications de blocs permettent de générer des données de qualification tel que des exigences, des tests ou des données de simulation utilisées pour la vérification et le développement de générateurs automatiques de code. ABSTRACT : Control and command softwares play a key role in safety-critical embedded systems used for human related activities such as transportation, healthcare or energy. Their impact on safety makes the assessment of their correctness the central point in their development activities. Such systems verification activities are usually conducted according to normative certification guidelines providing objectives to be reached in order to ensure development process reliability and thus prevent flaws. Verification activities usually relies on tests and proof reading of the software but recent versions of certification guidelines are taking into account the deployment of new development paradigms such as model-based development, and formal methods; or the use of tools in assistance of the development processes. Automatic code generators are used in most safety-critical embedded systems development in order to avoid human related software production errors and to ensure the respect of development quality standards. As these tools are supposed to replace humans in the software code production activities, errors in these tools may result in embedded software flaws. It is thus in turn mandatory to ensure the same level of correctness for the tool itself than for the expected produced code. Tools verification shall be done according to qualification guidelines. We advocate in our work the use of model-based development and formal methods for the development of these tools in order to reach a higher quality level. Critical control and command software are mostly designed using graphical dataflow languages. These languages are used to express complex systems relying on atomic operations embedded in blocks that are gathered in block libraries. Blocks may be sophisticated pieces of software with highly variable structure and semantics. This variability is dependent on the values of the block parameters and of the block's context of use. In our work, we focus on the formal specification and verification of such block based languages. We experimented various techniques in order to ensure a formal, sound, verifiable and usable specification for blocks. We developed a domain specific formal model-based language specifically tailored for the specification of structure and semantics of blocks. This specification language is inspired from software product line concepts in order to ensure a correct and scalable management of the blocks variability. We have applied this specification and verification approach on chosen block examples from common industrial use cases and we have validated it on tool prototypes. Blocks are the core elements of the input language of automatic code generators used for control and command systems development. We show how our blocks formal specification can be translated as code annotations in order to ease and automate the generated code verification. Code annotations are verified using specialised static code analysis tools. Relying on synchronous observers to express high level requirements at the input model level, we show how formal block specification can also be used for the translation of high level requirements as verifiable code annotations discharged using the same specialised tooling. We finally target the assistance of code generation tools qualification activities by arguing on the ability to automatically generate qualification data such as requirements, tests or simulation results for the verification and development of automatic code generators from the formal block specification
    corecore