
thesis for the degree of licentiate of engineering

On Provably Correct Decision-Making for
Automated Driving

Yuvaraj Selvaraj

Department of Electrical Engineering
Chalmers University of Technology

Gothenburg, Sweden, 2020

On Provably Correct Decision-Making for Automated Driving

Yuvaraj Selvaraj

Copyright © 2020 Yuvaraj Selvaraj
All rights reserved.

This thesis has been prepared using LATEX.

Department of Electrical Engineering
Chalmers University of Technology
SE-412 96 Gothenburg, Sweden
Phone: +46 (0)31 772 1000
www.chalmers.se

Printed by Chalmers Reproservice
Gothenburg, Sweden, August 2020

Abstract
The introduction of driving automation in road vehicles can potentially reduce
road traffic crashes and significantly improve road safety. Automation in road
vehicles also brings several other benefits such as the possibility to provide
independent mobility for people who cannot and/or should not drive. Many
different hardware and software components (e.g. sensing, decision-making,
actuation, and control) interact to solve the autonomous driving task. Cor-
rectness of such automated driving systems is crucial as incorrect behaviour
may have catastrophic consequences.
Autonomous vehicles operate in complex and dynamic environments, which

requires decision-making and planning at different levels. The aim of such
decision-making components in these systems is to make safe decisions at
all times. The challenge of safety verification of these systems is crucial for
the commercial deployment of full autonomy in vehicles. Testing for safety
is expensive, impractical, and can never guarantee the absence of errors. In
contrast, formal methods, which are techniques that use rigorous mathematical
models to build hardware and software systems can provide a mathematical
proof of the correctness of the system.
The focus of this thesis is to address some of the challenges in the safety ver-

ification of decision-making in automated driving systems. A central question
here is how to establish formal verification as an efficient tool for automated
driving software development.

A key finding is the need for an integrated formal approach to prove cor-
rectness and to provide a complete safety argument. This thesis provides
insights into how three different formal verification approaches, namely su-
pervisory control theory, model checking, and deductive verification differ in
their application to automated driving and identifies the challenges associated
with each method. It identifies the need for the introduction of more rigour
in the requirement refinement process and presents one possible solution by
using a formal model-based safety analysis approach. To address challenges in
the manual modelling process, a possible solution by automatically learning
formal models directly from code is proposed.

Keywords: Automated driving, formal methods, formal verification, decision-
making, supervisory control theory, model checking, deductive verification,
hybrid systems.

i

ii

List of Publications
This thesis is based on the following publications:

[A] Yuvaraj Selvaraj, Wolfgang Ahrendt, Martin Fabian, “Verification of
Decision Making Software in an Autonomous Vehicle: An Industrial Case
Study”. Larsen K., Willemse T. (eds): FMICS 2019. LNCS 11687, pp. 143–
159, 2019.

[B] Yuvaraj Selvaraj, Zhennan Fei, Martin Fabian, “Supervisory Control
Theory in System Safety Analysis”. A.Casimiro et al. (Eds.): SAFECOMP
2020 Workshops, LNCS 12235, pp. 9-22, 2020.

[C]Yuvaraj Selvaraj, Ashfaq Farooqui, Ghazaleh Panahandeh, Martin Fabian,
“Automatically Learning Formal Models: An Industrial Case from Autonomous
Driving Development”. ACM/IEEE 23rd International Conference on Model
Driven Engineering Languages and Systems (MODELS ’20 Companion).

Other publications by the author, not included in this thesis, are:

[D] R. Chandru, Y. Selvaraj, M. Brännström, R. Kianfar and N. Murgovski,
“Safe autonomous lane changes in dense traffic”. IEEE 20th International
Conference on Intelligent Transportation Systems (ITSC), Yokohama, 2017,
pp. 1-6, doi: 10.1109/ITSC.2017.8317590.

iii

iv

Acknowledgments
I would like to thank Ali Hedayati for giving me the opportunity to pursue
this Industrial PhD at Zenuity. It has been a journey full of learning and I
am certain that the learning doesn’t stop here.
I am privileged to have Prof. Martin Fabian and Prof. Wolfgang Ahrendt

as my supervisors. The interdisciplinary discussions with both of them have
immensely helped me shape the ideas in this thesis. I am thankful for the
constant support, encouragement, and feedback they have provided me over
the years.

I would like to thank all my colleagues at Zenuity and Chalmers. A special
gratitude goes to Jonas Krook, Zhennan Fei, and Ghazaleh Panahandeh for
all the discussions and feedback.

Finally, I would not be where I am today without my family who have
continuously supported me in everything I do. This thesis would not have
been possible without my wife, Lakshna. I am grateful for all the love and
support you have given me. Thank you for having endured me through the
good, and the bad.

Yuvaraj Selvaraj
Gothenburg, August 2020.

This work is supported by FFI, VINNOVA under grant number 2017-05519,
Automatically Assessing Correctness of Autonomous Vehicles–Auto-CAV.

v

Acronyms

AD: Automated Driving

ADAS: Advanced Driver Assistance Systems

ASIL: Automotive Safety Integrity Level

DES: Discrete Event Systems

E/E: Electrical and/or Electronic

EFSM: Extended Finite State Machine

FSM: Finite State Machine

HP: Hybrid Program

LSM: Lateral State Machine

SAE: Society of Automotive Engineers

SCT: Supervisory Control Theory

SOTIF: Safety of the Intended Functionality

TLA: Temporal Logic of Actions

WHO: World Health Organization

vi

Contents

Abstract i

List of Papers iii

Acknowledgements v

Acronyms vi

I Overview 1

1 Introduction 3
1.1 Industrial Challenges . 5
1.2 Research Questions . 7
1.3 Scientific Contributions . 8
1.4 Thesis Structure . 8

2 The Question of Proof 11
2.1 Conformance to Safety Standards 11

ISO 26262 . 12
Other Relevant Standards . 13

2.2 Testing, Simulation, and Miles Driven 14

vii

2.3 Formal Verification . 15

3 Formal Methods 17
3.1 Supervisory Control Theory . 19
3.2 Model Checking . 21
3.3 Deductive Verification . 23

4 Provably Correct Decision-Making 25
4.1 Specify to Prove . 26
4.2 Towards Provable Correctness and Completeness 29
4.3 Models - Good, Bad, and Useful 30
4.4 Hybrid System Verification . 32

The Safety Monitor . 33
Ego-vehicle Motion Model . 35
Constraint Generation . 36

5 Summary of Included Papers 39

6 Concluding Remarks and Future Work 41
6.1 Future Work . 42

References 43

II Papers 51

A Verification of Decision Making Software A1
1 Introduction and Related Work A3
2 Problem Description . A6
3 Supervisory Control Theory . A8

3.1 Nonblocking Verification A9
3.2 Verification of LSM in Supremica A10

4 Model Checking . A11
4.1 Temporal Logic of Actions A12
4.2 Verification of LSM in TLA+ A13

5 Deductive Verification . A15
5.1 SPARK . A15
5.2 Verification of LSM in SPARK A16

viii

6 Insights and Discussion . A18
7 Conclusion . A21
References . A22

B Supervisory Control Theory in System Safety Analysis B1
1 Introduction . B3
2 Fault Tree Analysis . B5

2.1 Pressure Tank System B6
3 Supervisory Control Theory . B6

3.1 Nonblocking verification B9
4 FTA in Supremica . B10

4.1 Modelling . B10
4.2 Verification . B12
4.3 Minimal Cut Sets . B15

5 Conclusion . B16
References . B18

C Automatically Learning Formal Models C1
1 Introduction . C3

1.1 Related Work . C6
2 Preliminaries . C7

2.1 The L∗ Algorithm . C8
2.2 The Modular Plant Learner C10

3 System Under Learning . C11
4 Learning setup . C13

4.1 Abstracting the Code C14
4.2 Interaction With the SUL C16
4.3 Learning Outcome . C17
4.4 Model Validation . C18

5 Insights and Discussion . C20
5.1 Towards Formal Software Development C21
5.2 Practical Challenges . C22
5.3 Software Reengineering and Reverse Engineering C24

6 Conclusion . C24
References . C26

ix

Part I

Overview

1

CHAPTER 1

Introduction

The World Health Organization (WHO) reports [1] that approximately 1.35
million people die each year due to road traffic crashes which makes it a lead-
ing cause of human death globally. In addition, road traffic crashes are also
a significant source of socio-economic losses amounting to $242 billion in the
United States [2], and around 3% of the gross domestic product [1] in most
countries. Studies show that 94% of serious crashes are due to human error [2],
[3]. The introduction of driving automation in road vehicles can potentially re-
duce such crashes and significantly improve road safety. Automation in road
vehicles also brings several other benefits. For example, it can help reduce
drivers’ stress by getting rid of the driving task and increase productivity as
the driving time can be used efficiently for non-driving tasks. Another ben-
efit is the possibility to provide independent mobility for people who cannot
and/or should not drive [2], [3].
The Society of Automotive Engineers (SAE) categorizes driving automa-

tion systems into six discrete and mutually exclusive levels based on roles
of the human driver and the driving automation system in relation to each
other [4]. The amount of human supervision required is a critical part of this
taxonomy and the levels extend from Level 0 (no automation) to Level 5 (full
automation), as shown in Table 1.1.

3

Chapter 1 Introduction

SAE
Level 0

SAE
Level 1

SAE
Level 2

SAE
Level 3

SAE
Level 4

SAE
Level 5

These are driver support features These are automated driving
features

Human driver responsible for driv-
ing whenever driver support features
are engaged.

Human driver is not driving when
automated driving features are
engaged.

Constant human supervision is
needed to maintain safety.

When the
feature
requests,
human
driver
must
drive.

These automated driv-
ing features will not
require the human
driver to take over.

limited to
providing
warnings
and mo-
mentary
assistance

provide
steer-
ing OR
brake/ac-
celeration
support

provide
steering
AND
brake/ac-
celeration
support

These features can drive
under limited operat-
ing conditions and will
not operate until all
requirements are met.

This fea-
ture can
drive un-
der all
condi-
tions.

automatic
emergency
braking,
lane de-
parture
warning

lane cen-
tering OR
adaptive
cruise
control

lane cen-
tering
AND
adaptive
cruise
control

traffic jam
chauffeur

local
driver-
less taxi
(pedals,
steering
wheel may
or may
not be
installed)

same as
Level 4
but fea-
ture can
drive ev-
erywhere
in all
conditions

Table 1.1: SAE levels of driving automation [5].

Currently, the level of automation in vehicles available for consumer pur-
chase is either Level 1 or Level 2 [6]. Levels 1 and 2 are described as Ad-
vanced Driver Assistance Systems (ADAS) while Levels 3 to 5 are described
as Automated Driving (AD) systems. With higher levels of automation, the
complexity of the system increases and therefore several technical, business,
and regulatory challenges arise in the commercial deployment of full auton-
omy in vehicles [7]. Among the technical challenges, sensor perception and
decision-making have been strongly researched in both academia and industry

4

1.1 Industrial Challenges

and significant progress has been made in the recent decade [8]–[11]. However,
the challenge of safety verification and validation of these systems is yet to be
solved [12]–[16].
The focus of this thesis is to address some of the challenges in the safety

verification of decision-making in automated driving systems.

1.1 Industrial Challenges
An automated driving system consists of many software and hardware com-
ponents interacting to solve different tasks, ranging from sensing, decision
making, and planning to control and actuation. These tasks are achieved
with the help of several electronic and/or electrical (E/E) subsystems that
can be connected in many possible architectural designs. In this thesis, we
consider an AD system architecture to consist of three subsystems as shown
in Figure 1.1.

DECISION	&	CONTROL

Threat	Assessment

Decision-Making

Planning

Collision
Avoidance

Sensors Sensor
Fusion Vehicle	Control Actuators

SENSE ACT

Figure 1.1: System Architecture

The sense subsystem includes sensors such as cameras, radars, gyros, etc.,
that perceive the autonomous vehicle’s surroundings and provide information
to the sensor fusion component. This component fuses all the information
from the different sensors to provide a mathematical model of the traffic situ-
ation, such as the vehicle state, road geometry, distance to other vehicles, etc.
The decision & control subsystem uses the fused information to decide
when and how to act. Typical sub-tasks here are threat assessment, decision-
making, path planning, etc. The decisions are then communicated to the act

5

Chapter 1 Introduction

sub-system in the form of, e.g., acceleration and steering commands. Finally,
these decisions are executed by using, e.g. brake and/or steering actuators to
control the vehicle.
Although human error is a major cause of many traffic accidents, the actual

failure rate is remarkably low. For instance, in the United States, the fatality
rate is 1.13 deaths per 100 million miles driven [12], [17]. This low rate presents
a challenge as the failure rate of AD systems have to be at least better than
human driving in order to increase overall traffic safety. Such a requirement
presents difficulties in the development and verification of these automation
systems. While human supervision is necessary to maintain safety in driver
support features (levels 0-2 of Table 1.1), there needs to be a convincing safety
argument for higher levels of automated driving features. Ensuring safety of
AD systems is a multi-disciplinary challenge and several approaches have been
researched and attempted to establish the correctness and subsequently prove
the safety of AD systems [15], [16].
At present, the most widely used industrial approach to assure automotive

software safety is testing. Testing can be done at various levels, such as soft-
ware unit testing, model-based testing, complete vehicle on-road testing, and
scenario-based virtual simulations. However, there are several challenges asso-
ciated with a testing based approach to prove safety [13]. The most prominent
one among them is that testing can never guarantee the absence of errors and
is therefore infeasible to ensure completeness. Testing for safety is also very
expensive and even impractical. Studies have shown [12] that it would be nec-
essary to drive hundreds of thousands of miles, and sometimes even billions
of miles to demonstrate that autonomous vehicles are better than humans.
The shortcomings in current industrial practice are further highlighted by

the impact of defective software deployed in production vehicles. Several
potentially dangerous software defects have been reported in the past that
could result in catastrophes not due to driver error [18], [19]. These defects
have resulted in hundreds of thousands of vehicle recalls as they pose an
unreasonable safety risk. In addition, fatalities and crashes involving driving
automation systems in Tesla [20], [21], Uber [22], and Google [23], [24] have
warranted stricter safety arguments for successful deployment of autonomous
vehicles at scale.
Formal methods, which are techniques that use rigorous mathematical mod-

els to build hardware and software systems can, in contrast to testing, provide

6

1.2 Research Questions

a mathematical proof of the correctness of the system. The strength of for-
mal methods lie in the use of unambiguous formal logic and the possibility to
provide a sufficiently complete safety argument. Formal methods consists of
various diverse techniques that can be classified based on the proof approach
used and the extent of formalisation used to prove the correctness. Of the
different formal approaches, a particularly useful one that aids in achieving
a higher level of safety assurance for automated driving systems is formal
verification.
Given a formal model of a system and a formal specification of the intended

behaviour of the system, formal verification is the act of proving or disproving
the correctness of the system with respect to its specification. Formal verifica-
tion has previously been used in safety-critical industries such as avionics [25],
railway systems [26], and nuclear plants [27]. Though formal verification is
shown to be useful in the automotive industry [28]–[30], it is not widely used
as an efficient tool in the development process. This clearly points to the
presence of unique challenges that hinder widespread industrial adoption of
formal verification.

1.2 Research Questions
This thesis mainly concerns the question of how to establish formal verifi-
cation as an efficient tool for automated driving software development. The
thesis starts with the hypothesis that formal methods, especially formal ver-
ification, can be used to prove the correctness of AD systems and thereby
provide sufficient evidence for strong safety arguments. While formal verifi-
cation is shown to be beneficial in automotive applications [28]–[32], it is yet
to become a standard tool in the development of automated driving software,
most probably due to certain obstacles. The central focus of this thesis is to
investigate these obstacles and explore how formal verification can be used to
prove the correctness of decision-making subsystems in autonomous vehicles.
Based on the included papers, this thesis aims to answer the following research
questions:

RQ 1 What factors affect the application of formal verification to automated
driving systems and what are the current challenges in existing methods?

7

Chapter 1 Introduction

RQ 2 How can we address the challenges in RQ 1, and how can the solutions
be scaled?

RQ 3 How can we integrate the solutions to RQ 2 in the day-to-day software
development process?

The work of this thesis has been carried out as a part of an industrial PhD
project at Zenuity AB.1 The primary method employed to answer the research
questions is in the form of industrial case studies, where the problem state-
ments addressed have their roots in the industrial research and development
of automated driving systems.

1.3 Scientific Contributions
The main scientific contributions in this thesis are documented in the included
papers. Paper A identifies several challenges in applying formal verification to
prove correctness of AD systems. It provides insights into how different formal
verification methods differ with respect to the choice of formalism and identi-
fies the need for an integrated approach to provide a sufficiently strong safety
argument. Two of the challenges identified in Paper A are further investigated
in Paper B and Paper C. Paper B demonstrates how formal methods can be
used to perform model-based safety analysis and this thesis discusses how
such an approach can be used to write better requirements for AD systems.
Furthermore, the case studies in this thesis strengthens the fact that manual
effort needed in formal verification is indeed an obstacle that impedes indus-
trial adoption. Paper C investigates one possible approach to alleviate the
problem of manually constructing formal models for decision-making systems.

1.4 Thesis Structure
The thesis is divided into two parts. Part I gives an introduction to auto-
mated driving, the challenges in proving correctness of AD, the necessary
fundamentals, and a summary of scientific contributions from the included
papers. Part II contains the papers. Part I consists of the following chapters:

1Zenuity AB recently changed its company identity to Ztwo company AB.

8

http://www.ztwocompany.com/

1.4 Thesis Structure

Chapter 1 - Introduction
This current chapter provides a brief introduction to automated driving,
the research questions and the contributions of this thesis.

Chapter 2 - The Question of Proof
The second chapter puts into perspective how formal methods compare
to the other current industrial approaches to provide credible safety
argument for automated driving.

Chapter 3 - Formal Methods
The third chapter presents the necessary preliminaries and the funda-
mental concepts of different formal verification methods discussed in this
thesis.

Chapter 4 - Provably Correct Decision-Making
This chapter presents insights obtained from the three papers towards
provable correctness for decision-making systems and connects them in
the context of this thesis.

Chapter 5 - Summary of Included Papers
This chapter provides a brief summary of the included papers and their
contributions.

Chapter 6 - Concluding Remarks and Future Work
The final chapter concludes the first part of the thesis and presents ideas
for future research.

9

CHAPTER 2

The Question of Proof

From Chapter 1, it is clear that correctness of AD systems is crucial for their
safe and successful deployment at scale. While several approaches [12], [15],
[16] have been researched and adopted to provide sufficient evidence for safe
and correct behaviour of AD, they do have their own limitations. This chapter
presents a brief overview of how formal methods compare to some of the other
industrial approaches for safety verification of AD systems.

2.1 Conformance to Safety Standards
A familiar strategy for safety argumentation is to show evidence for con-
formance to industry-specific safety standards. For instance, many safety
standards exist in the transportation industry to aid in the development of
safety-critical software. The DO-178C standard [33] is used by various certi-
fication authorities in the aerospace industry to certify software for aerospace
systems. Similarly, the railway industry uses the EN50128 (IEC 622279) [34]
as one of the safety standards. For the automotive industry, the ISO 26262
functional safety standard [35] is the primary standard to address the safety
of electrical and/or electronic (E/E) systems within road vehicles.

11

Chapter 2 The Question of Proof

ISO 26262
ISO 26262 describes a functional safety framework for the development of safe
E/E systems. Functional safety, as defined by the standard is the absence of
unreasonable risks that could be caused by the malfunctioning behaviour of
the E/E systems. The standard provides a reference for the automotive safety
lifecycle and takes a risk-based approach to mitigate and/or avoid risks. ISO
26262 gives appropriate guidelines to achieve functional safety throughout the
development process, which includes activities like requirement specification,
design, implementation, verification and validation, etc.
The initiating task of the safety lifecycle is the item definition. The objective

of the item definition phase is to develop a description of the system, or
combination of systems, for which functional safety needs to be achieved and
subsequently determine its functionality, boundary, interfaces, environmental
conditions, assumptions, etc. The item definition phase is then followed by a
hazard analysis and risk assessment phase where potential hazardous events
of the item are identified and classified based on three factors:

• the severity of the potential harm caused by the hazardous event,

• the probability of exposure of the hazardous event, and

• the controllability, which estimates the ability to avoid the specific harm.

Together, the three parameters determine the Automotive Safety Integrity
Level (ASIL). Four possible levels: ASIL A, ASIL B, ASIL C, and ASIL D
are defined to categorize the hazardous events. ASIL A is the lowest safety
integrity level and ASIL D is the highest. These levels are then used to obtain
the safety goals that form the top-level safety requirements for the system.
These safety goals are the key to achieving functional safety and the standard
recommends best practices for the design, implementation, and verification of
the item such that the safety goals are met.
In subsequent phases of the safety lifecycle, safety goals are broken down to

obtain detailed safety requirements. These detailed requirements, derived as a
result of the requirement refinement process, correspond to different phases in
the design. For instance, the safety goals lead to implementation-independent
functional safety requirements, which in turn are refined to obtain implemen-
tation specific technical safety requirements. Since the ASIL allotted to a

12

2.1 Conformance to Safety Standards

safety goal is inherited throughout the process, sufficient verification evidence
for all the requirements is needed to comply with the safety goal.
Evidently, a higher ASIL demands more rigorous development processes

compared to a lower ASIL. This fact is also reflected in the recommended
best practices for the development of high ASIL components in the standard.
For instance, while the use of semi-formal and formal methods (in addition to
other methods) are recommended for higher ASIL components, the standard
has no recommendation for or against their usage for lower ASIL components.

Several arguments [13], [15], [36] have been presented to show that ISO
26262 presents unique challenges and is sometimes even inadequate to com-
pletely demonstrate AD safety. A specific concern is the impact of the inher-
ent assumptions that are made in the standard. As an example, in the ASIL
analysis, especially the controllability parameter assumes a human driver to
react and mitigate/avoid risks. While such an assumption might be relevant
in ADAS features, it is fatal for AD. Another arguable point is the assump-
tion of the V model [35], [37] in the reference safety lifecycle. The relevance
of ASIL analysis and the recommended best practices in a development ap-
proach other than the V model is debatable. Such challenges have initiated
the development of new standards [38], [39] specific to autonomous systems.

Other Relevant Standards
The recently published UL 4600 [38] standard addresses the safety processes
for the evaluation of autonomous vehicles and other products without hu-
man supervision. The standard is intended to provide additional elements
to address the needs for safety of full autonomy and is therefore expected
to work with other existing standards. UL 4600 takes a claim-based safety
case approach that includes structured arguments and evidence to support
the fact that an item is acceptably safe for deployment. While UL 4600 pro-
vides guidance and recommended best practices to improve the completeness
of the safety case, it does not mandate any specific development process (e.g.,
V model). Most importantly, UL 4600 highly recommends the use of for-
mal methods as a verification and validation approach to provide sufficient
evidence of acceptable safety.

The ISO/PAS 21448 [39] standard addresses the safety of systems that rely
on sensing the environment, which is essential for AD. The ISO/PAS 21448
standard concerns the safety of the intended functionality (SOTIF) and is

13

Chapter 2 The Question of Proof

complementary to the functional safety aspect of ISO 26262. SOTIF provides
guidelines to achieve absence of unreasonable risks due to potential hazards
caused by limitations in a system that is free from faults addressed in the
ISO 26262 standard. Limitations that arise due to the inability of a function
to have correct situational awareness and performance issues due to sensor
variations are typical examples of risks dealt with in this standard.
Though these standards exist, conformance to any particular standard alone

is not a guarantee of a 100% safe autonomous vehicle. However, conformance
to such standards provides the necessary rigorous evidence to support an
acceptably safe autonomous vehicle. Formal methods, by definition requires
rigorous mathematical proofs and therefore meets the objective of such safety
standards, wherever applied.

2.2 Testing, Simulation, and Miles Driven
As mentioned in Chapter 1, testing is a common quality assurance strategy
within the automotive industry. Requirements based testing is an important
aspect of the V model development framework in the reference safety lifecycle
of ISO 26262. An approach only based on testing for AD safety includes many
challenges and the most important ones are highlighted in this section.
The primary concern is that testing can only be used to find faults and

can never guarantee their absence. Therefore, such an approach presents
an incomplete safety argument. Testing can be done at various levels that
range from software unit testing to complete vehicle testing. Driving field-
test vehicles in real world conditions is one of the approaches undertaken to
demonstrate acceptably safe autonomous vehicles. An important practical
question here is how many test miles need to be driven? The answer is that
it would require hundreds of millions of miles to statistically demonstrate
the reliability of AD in terms of fatalities and injuries compared to human
driving [12]. In addition to being expensive and potentially dangerous to
public safety, such an approach is practically intractable.
One way to reduce the cost and scale of vehicle-level testing is to run the

tests virtually by means of simulations in a wide range of scenarios repre-
senting real world conditions. While this approach overcomes some of the
disadvantages of field testing, it brings a different set of unique challenges.
For instance, the reliability of the simulation framework, selection of statis-

14

2.3 Formal Verification

tically significant simulations, and the need for massive amounts of data to
accurately represent real world environment are some of the challenges that
have to be addressed [15], [16].

2.3 Formal Verification
Although formal methods, especially formal verification does not remove the
need for testing, it can provide a higher level of safety assurance in the form of
correctness proofs. In comparison to testing, which requires dynamic analysis
(e.g. executing code, running software in a vehicle, etc.), formal verification
techniques are static in nature. This makes it best suited to detect subtle
errors in the early stages of development and potentially avoid catastrophic
consequences associated with vehicle recalls [18], [19]. Formal verification can
indeed provide sufficient rigour in the safety argument as required by different
safety standards. Despite the advantages, the industrial adoption of formal
verification in the automotive industry for AD development is below par. In
order to ease their industrial adoption for safe AD development, the associated
challenges need to be explored and possible solutions have to be investigated.
In the subsequent chapters, this thesis throws some light on these aspects.

15

CHAPTER 3

Formal Methods

Admittedly, formal methods is an overarching term that includes a variety of
tools and techniques. Currently, an online repository1 lists more than 100 dif-
ferent formal notations and tools available for describing and reasoning about
computer-based systems. There are many different existing taxonomies to
classify formal methods. One way of classification is lightweight [40] versus
what we in contrast can call heavyweight formal methods. This taxonomy is
based on the ease of use and the extent of formalization in the development
process. While the more common heavyweight approach uses full formaliza-
tion and is more powerful, lightweight formal methods use partial (less than
complete) formalizations and do not require deep expertise.
In addition to the above taxonomy, Almeida et al. [41] present other types of

classification based on different factors. According to Almeida et al., the char-
acteristic aspect of formal methods is the ability to guarantee the behaviour
of a given system with some rigorous approach. Therefore, the specification,
which is a description of the intended behaviour, is at the core of formal meth-
ods. In this context, the different groups of formal methods can be classified
into four types as shown in Table 3.1.

1https://formalmethods.wikia.org/wiki/Formal_methods

17

Chapter 3 Formal Methods

Classification Approach Example
Specify and
Analyse

specification is formally defined and anal-
ysed using e.g. animation, execution,
etc.

ASM, Z, VDM,
CASL

Specify and
Prove

specifications and models are formally
defined to prove properties about them
(formal verification)

model checking,
SPARK, KeY

Specify and
Derive

given a formal specification, obtain
an implementation whose behaviour
matches the specification (correct-by-
construction)

supervisory con-
trol theory, pro-
gram refinement

Specify and
Transform

transform a specification to either ap-
proximate or enrich it

abstract interpre-
tation

Table 3.1: Classification of formal methods [41]

In this thesis, the principal focus is on the safety verification of AD systems,
and therefore we limit ourselves to the “Specify and Prove”, i.e., the formal
verification category of formal methods. As soon as we enter the realm of
formal verification, a natural question that follows is: how do we specify, and
how do we prove properties of the systems? Of course, there are multiple
ways to specify and prove depending on the modelling formalism and the
proof technique used. Traditionally, the choice of verification method for a
computer-based system has been dependent on the nature of the system. For
instance, model checking using SPIN [42] can be used to verify distributed
asynchronous process systems, and the deductive verification tool KeY [43]
can be used to verify Java programs.
In the case of AD systems, such a straightforward choice of the verifica-

tion method is no longer possible due to the complexity involved. The sensor
fusion component of the AD system consists of probabilistic algorithms and
therefore probabilistic techniques such as the PRISM model checker [44] could
be a potential choice. The vehicle control component is built on strong con-
trol theoretic and analytical aspects of continuous state systems and therefore
necessitate tools that can handle these types of systems, such as the contin-
uous reachability analysis toolbox [45]. The decision and control component
includes various sub-components of different nature (discrete, continuous, hy-
brid, concurrent, etc.) and therefore multiple methods are suitable. As dis-
cussed in Chapter 4, a logical formalism that supports hybrid system verifi-

18

3.1 Supervisory Control Theory

cation such as the differential dynamic logic [46], [47] is highly favourable in
this regard. The use of machine learning algorithms in AD systems further
complicates the verification process.
A variety of formal verification techniques have previously been used to

reason about autonomous systems [48], [49]. In this thesis, we focus on three
general methods shown in Table 3.2. The choice of these methods is primarily
motivated by the following important factors:

• characteristic of the decision-making system in automated driving,2

• established proof of concept for verification of safety-critical systems,

• capability to handle industrial sized systems.

Approach Technique Tools
Control theoretic supervisory control theory,

invariant-set control theory
Supremica,
CORA

Model checking explicit, symbolic, bounded TLA+, nuXmv,
CBMC

Deductive verification Hoare logic, dynamic logic, dif-
ferential dynamic logic

SPARK, KeY,
KeYmaera

Table 3.2: Examples of formal verification techniques

3.1 Supervisory Control Theory
The Supervisory Control Theory [50] (SCT) provides a framework for mod-
elling, synthesis, and verification of reactive control functions for discrete event
systems (DES), which are systems that occupy at each time instant a single
state out of its many possible ones, and transit to another state on the oc-
currence of an event. Supremica [51] is a tool that implements SCT based
algorithms for the verification and synthesis of DES models. Supremica has
previously been shown to handle industrial sized systems [52] and also for the
synthesis and verification of AD systems [30], [53].

2A brief description of decision-making in AD systems is presented in Chapter 4.

19

Chapter 3 Formal Methods

Given a DES model of a system to control, the plant, and a specification
of the desired controlled behaviour, the SCT provides means to synthesize
a supervisor that interacting with the plant in a closed-loop dynamically re-
stricts the event generation of the plant such that the specification is satisfied.
Though the original SCT focused on synthesising supervisors that by construc-
tion fulfil the desired properties, a dual problem of interest here is to, given a
model of a plant and specification, verify whether the specification is fulfilled
or not.
A DES modelling formalism appropriate in our context is finite-state ma-

chines extended with bounded discrete variables, with guards (logical expres-
sions) over the variables and actions that assign values to the variables on the
transitions [54].

Definition 1: An Extended Finite State Machine (EFSM) is a tuple E =
〈Σ, V, L,→, Li, Lm〉, where Σ is a finite set of events, V is a finite set of
bounded discrete variables, L is a finite set of locations, →⊆ L×Σ×G×A×L
is the conditional transition relation, where G and A are the respective sets of
guards and actions, Li ⊆ L is the set of initial locations, and Lm ⊆ L is the
set of marked locations.
The current state of an EFSM is given by its current location together

with the current values of its variables. Thus, the state of an EFSM is not
necessarily explicitly enumerated, but can be represented symbolically. This
richer structure, though with equal expressive power, shows good modelling
potential compared to ordinary finite state machines. The expression l0

σ:[g]a−−−→
l1 denotes a transition from location l0 to l1 labelled by event σ ∈ Σ, and with
guard g ∈ G and action a ∈ A. The transition is enabled when g evaluates
to T, and on its occurrence the EFSM changes location from l0 to l1, while a
updates the values of some of the variables.
EFSMs naturally interact through shared variables, but they can also in-

teract through shared events, which is modelled by synchronous composition,
where common events occur simultaneously in all interacting EFSMs, or not
at all, while non-shared events occur independently. By this interaction mech-
anism a supervisor restricts the event generation of the plant; if the supervisor
has a specific event in its alphabet but has no enabled transition labelled by
that event from its current state, then the closed-loop system cannot execute
that event in the current global state. We denote the synchronous composi-
tion of two EFSMs E1 and E2 by E1 ‖ E2 [54]. As defined by [54], transitions

20

3.2 Model Checking

labelled by shared events but with mutually exclusive guards, or conflicting
actions can never occur.

Nonblocking Verification
Given a set of EFSMs E = {G1, . . . , Gn,K1, . . . ,Km} where the components
Gi (i = 1, . . . , n) represent the plant, and Kj (j = 1, . . . ,m) represent the
specification, we now want to determine whether the synchronous composi-
tion over all the components can from any reachable state always reach some
marked state. The straightforward way to do this, called the monolithic ap-
proach, is intractable for all but the smallest systems, due to the combinatorial
state-space explosion problem. Thus, more efficient approaches are needed.
One such approach that pushes the limit of what is tractable is the abstraction-

based compositional verification [52], which has shown remarkable efficiency
and manages to handle systems of industrially interesting sizes and complex-
ity. It can be shown [52] that when E is blocking, this is due to some conflict
between the components of E . Thus, the approach of [52] employs conflict-
preserving abstractions to iteratively remove redundancy and thus to keep the
abstracted system size manageable. However, this approach eventually ends
up converting the resulting abstracted EFSM system into ordinary finite-state
machines, and then doing a monolithic verification of that. This then requires
an efficient explicit verification algorithm, such as the one presented in [55].

3.2 Model Checking
Model checking [56], [57] is a framework for verification of finite transition sys-
tems using temporal logic [58] as specification formalism. Several formalisms
and powerful model checking tools have emerged over the years [59], [60].
The successful application of model checking to various problems [61] could
be owed to different factors. Among them, the high automation provided by
model checking tools and the possibility to obtain a counterexample when the
specification is violated are important ones.

Definition 2: A finite transition system is a tuple T = 〈S,Act,→, I, AP,L〉
where S is a finite set of states, Act is a finite set of actions, →⊆ S×Act×S
is a transition relation, AP is a finite set of atomic propositions, and L : S →
2AP is a labelling function.

21

Chapter 3 Formal Methods

Given a transition system T , and a temporal logic formula f , the model
checking problem is a decision procedure for T � f . If T 2 f , then the model
checking algorithm provides a counterexample as evidence for the violation,
which can then be used to analyse the issue and the ways to resolve it.

Temporal Logic of Actions
The Temporal Logic of Actions (TLA) is a logical formalism for specifying
and reasoning about concurrent systems [62]. TLA is a variant of temporal
logic [58] and uses the notion of states and actions to model behavioural prop-
erties of systems. TLA, as a logical formalism provides the expressive power to
reason about programs using assertions on states and pairs of states (actions).
Actions are predicates that relate two consecutive states and are used to cap-
ture how the system is allowed to evolve. This section only presents a brief
overview of TLA and TLA+, the associated formal language for specifying
and model checking systems. A more detailed description of the language and
other advanced topics is available in [62]–[64]. The industrial use of TLA+ is
documented in [63], which also includes an experience report on using TLA+

for the verification of critical systems at Amazon Web Services [65].
The reasoning system in TLA is built around TLA formulas. A TLA for-

mula is true or false on a behaviour. A behaviour in TLA is an infinite sequence
of states. A state in TLA is an assignment of values to variables and a step is a
pair of states. Steps of a behaviour denote successive pairs of states. Given a
system S, with the executions of the system represented as behaviours, and a
formula f , S satisfies f if and only if the formula f is true for every behaviour
of S.
The elementary building blocks of a TLA formula include state predicates,

actions, logical operators (such as ∧,¬, etc.), the temporal operator � (al-
ways) and the existential quantifier ∃. A state predicate is a boolean valued
expression on states. An action, A, is a boolean valued expression on steps.
Actions are formed from unprimed variables and primed variables to represent
the relation between old states and new states. The unprimed variables refer
to the values of the variables in old states, the first state of the step, whereas
the primed variables refer to the variable values in new states, the second state
of the step. State predicates have no primed variables. A step is an A-step
if it satisfies A. An action is valid, � A, iff every step is an A-step. In TLA,
atomic operations of programs are represented by actions.

22

3.3 Deductive Verification

TLA+ is a formal specification language based on formal set theory, first
order logic and TLA. A TLA+ specification, typically denoted Spec, is a tem-
poral formula on behaviours. All the behaviours satisfying Spec constitute
the correct behaviours of the system. TLA+ describes a system as a set of
behaviours with an initial condition and a next state relation. The initial con-
dition specifies the possible initial states, and the next state relation specifies
the possible steps. A TLA+ specification is a temporal formula of the form

Spec , Init ∧� [Next]〈vars〉 ∧ Temporal (3.1)

where Init is a state predicate corresponding to the initial condition, Next is an
action corresponding to the next state relation, vars is a tuple of all variables
in the specification, and Temporal is a temporal formula usually specifying
liveness conditions. Formula Spec can be seen as a predicate on behaviours.
Spec is true for a behaviour σ, if and only if Init is true in the first state of σ
and every step in σ is either a step that satisfies Next or is a stuttering step.
A stuttering step is one in which none of the variables are changed.
The specification (3.1) can be verified using the TLC model checker. TLC

takes a TLA+ specification and checks whether the specification satisfies the
desired properties by evaluating all possible behaviours of the specification.
The TLA+ specification language accompanied by an IDE consisting of TLC
and other useful tools can be downloaded from [63].

3.3 Deductive Verification
Model checking is well suited to establish (temporal) properties of state traces,
but mostly requires abstractions over the real source code. In contrast to that,
deductive verification [66] techniques are well suited for fully precise reasoning
about the computation on the source code level. Often, first order-logic is
used to characterise conditions on the data in specific states, in pre- and
post-conditions of procedures, or invariants. Deductive verification typically
uses a compositional methodology, specifying and verifying one procedure at
a time. Verification tools exist for common programming languages such as
C [67], Java [68], or Ada [69]. In the following section one such deductive
verification tool used in this thesis is presented and in Chapter 4, another
deductive verification approach for hybrid systems is presented.

23

Chapter 3 Formal Methods

SPARK
Ada [70] is a high level imperative programming language targeting the de-
velopment of large scale safety critical software. Ada is suited to meet the
high integrity software requirements and has been used in several industrial
embedded software development projects [71]. SPARK is a subset of Ada with
additional features to support formal verification [69]. SPARK uses property
specifications in the form of program annotations described inline with the
source code to perform static program analysis and build automated proofs to
show the correctness of the software. In that sense, SPARK uses the correct-
by-construction philosophy through contract-based programming to develop
software.
A SPARK program is made up of one or more program units. Subprograms

and packages are two examples of SPARK program units. A subprogram ex-
ecution is invoked by a call and subprograms express a sequence of actions.
Procedures and functions are the two types of subprograms in SPARK. Pro-
cedure calls are standalone statements, whereas function calls occur in an ex-
pression and return a value. Packages group together entities like data types,
subprograms, etc., and can be considered to be the equivalent of header files in
an object oriented programming language like C++. A program unit consists
of two structures, a specification and a body. The specification contains the
variables, types and the subprogram declarations with their annotations. The
body of a program unit contains the details of the implementation.
Properties are in SPARK specified using subprogram contracts (pre- and

post-conditions), loop invariants, and data dependencies. The formal verifi-
cation toolset in SPARK can perform program analysis on the source code
at various levels. Flow analysis capabilities ensure the program correctness
with respect to data flow and information flow. Errors arising due to unini-
tialized variables, data dependencies between inputs and outputs of subpro-
grams, well-formedness of programs, etc., are checked by this level of analysis.
A higher level of analysis is to perform automated proofs to check for run time
errors and conformance of the program with the specifications. The program
annotations specified are used to generate verification conditions, which can
then be discharged using the proof tools to show program correctness.

24

CHAPTER 4

Provably Correct Decision-Making

During driving, a human driver takes many critical decisions depending on a
lot of factors such as perception, intention, and even emotion. While human
decisions and actions may or may not always be logical, decision-making in
automated driving systems needs to be logically correct. The main challenge
in these systems lies in reliably capturing the different dependent factors in
the decision-making process and verifying their correctness.
The decision and control sub-system as shown in Figure 1.1 has different

responsibilities that include, (i) long term strategic and short term operational
decision-making based on individual and fused sensor inputs, (ii) predicting
the motion and intention of the other road users to assess the traffic situation,
and (iii) safe path planning for both longer and shorter time horizons. Several
approaches can indeed be used to design such sub-systems in autonomous
vehicles [11]. More recently, an end-to-end learning approach for autonomous
vehicles [72] is becoming popular for complex planning and decision-making
processes. However, the verification of such an approach presents unique
challenges that pose serious concerns about safety [11], [13], [49], [73].

Autonomous vehicles operate in complex and dynamic environments, which
requires decision-making and planning at different levels. For example, to

25

Chapter 4 Provably Correct Decision-Making

achieve a goal of autonomously driving from an arbitrary point A to another
arbitrary point B, typical high-level strategic decisions could be to decide
which lane to drive in, and the associated planning at this level could be
to plan a route from A to B [74]. Depending on these high-level decisions,
the traffic situation is assessed on the subsequent levels to make low-level
decisions such as when to brake, when to change lane, etc. The planning
at this level could include planning a path to complete a lane change, or an
overtake manoeuvre, etc.
The aim of such decision-making components in these systems is to make

safe decisions at all times. In order to make a safe decision, predicting the
behaviour of the other road users and assessing the traffic situation is crucial.
In addition, the decisions taken by the autonomous vehicle should result in
actions that are unambiguous so that the other road users can adapt and co-
operate for overall safety. Once the traffic situation is assessed, the decision-
making is then based on certain decision thresholds. For example, one way
to decide when to brake for a red light is to base the decision on the distance
to safely brake without a collision. Similarly, a decision to switch on the turn
indicators could depend on whether a lane change process has been initiated or
not. In this thesis, we focus on such low-level decision-making where discrete
decisions are taken based on certain thresholds that depend on the assessment
of the traffic situation and the environment. The following sections describe
how formal techniques can be used to prove the correctness of such decision-
making algorithms and the insights obtained in the process.

4.1 Specify to Prove
As described in Chapter 3, specification is at the heart of the formal veri-
fication process. One of the important challenges encountered in Paper A
and in Paper C is the lack of adequate documented requirements for the for-
mal verification process. In Paper A, the Lateral State Manager (LSM), a
decision-making component responsible for managing modes during an au-
tonomous lane change, is formally modelled and one safety requirement Req.1
(from Paper A):

Req.1 If changing lane, the lane change shall always be to the same side as
indicated.

26

4.1 Specify to Prove

is verified using the different methods. While it proved to be enough to com-
pare different verification approaches and draw insights, it is insufficient to
provide a complete safety argument.
Verification of safety requirements at all levels is an important aspect of

ISO 26262. A complete safety argument depends on the traceability of the
lower level safety requirements to the higher level safety goals. Bergenhem
et al. [36] claim that the safety requirement refinement process of ISO 26262
implies semantic gaps that present unique challenges to verify completeness
and correctness of the safety argument. They also advocate the importance
of having formal proofs at each step of the requirement refinement process so
that the overall safety argument is complete and correct. Experience from Pa-
per A further strengthens this argument. Though LSM was formally verified
with respect to Req.1 , no conclusions can be made towards a complete safety
argument.
One way to address the above challenge is to introduce more rigour in

the requirement refinement process with the help of formal methods. Based
on the insights from Paper A, Paper B presents a model-based safety analysis
approach using SCT [51], [75], [76]. The formal approach discussed in Paper B
systematically obtains formal models from a given fault tree and analyses
them. Since safety analysis techniques like fault tree analysis is used to identify
safety goals, i.e., the high-level safety requirements, a model-based approach
can potentially be used to achieve traceability in the analysis. For instance,
the models used in the safety analysis can incrementally be refined with more
details to obtain low-level safety requirements in the subsequent phases.

As an illustration of this approach, consider the LSM component studied
in Paper A. The LSM is a part of the lane change module in the autonomous
vehicle. Therefore, in the model-based safety analysis approach, the first task
is to create a high-level abstract model of the lane change module. At this
level, the interactions and responsibilities of the different sub-components are
considered and the implementation details, such as the model of LSM as
captured in Paper A can be abstracted away. A formal analysis at this level
could then be used to obtain the high-level safety requirements. Subsequently,
the individual components can be iteratively refined with more details until the
implementation model discussed in Paper A is obtained. Paper B only presents
how to analyse fault trees and the approach illustrated above is discussed as
future work.

27

Chapter 4 Provably Correct Decision-Making

Another key insight obtained from the case studies in Paper A and Pa-
per C is that there are unique challenges associated with how a given safety
requirement can be formally specified in the different approaches to obtain
meaningful verification results. In Paper A, Req.1 was formally modelled us-
ing EFSM as the specification language. The use of additional features such as
guards and variables in EFSM definitely made it easier to express Req.1 with
just 2 locations, as shown in Figure 3. In Paper C, an FSM model of LSM was
automatically learnt. Though theoretically EFSM and FSM have the same
expressive power, expressing Req.1 using FSM was not straightforward.
In the model checking approach using TLA+, Req.1 was expressed as an

invariant property of the model using TLA constructs as shown in Paper A
(A.2). In the model checking paradigm, invariant properties are a particu-
lar type of the more general safety properties, which are often characterised
as nothing bad should happen [59]. Invariants, which are linear-time prop-
erties in TLA+, are state predicates that should be valid in all reachable
states. Several logical constructs are available in TLA+ to express such prop-
erties [64]. In comparison, the primary construct in the nonblocking verifica-
tion algorithms used in the SCT framework is the notion of marked states.
Though the constructs in these two formalisms cannot be directly compared, a
close translation of the nonblocking verification of marked states would be the
branching-time logical1 construct, AG EF marked states. AG EF marked
states is a branching-time construct that expresses across All computational
paths Globally, there Exists at least one path where Finally marked states
are reached.
Although similar verification results were obtained from both SCT and

model checking, it is well known that logic in branching-time and linear-time
are directly incomparable. It could probably be the case that the nature of
LSM and Req.1 made it possible to obtain similar results from both these
approaches. However, to draw any general conclusions in our context of auto-
mated driving, more empirical case studies are required with different types of
requirements, especially safety properties that are not necessarily invariants.
With the deductive verification framework in SPARK [69], the major find-

ing in this thesis is that expressing Req.1 using pre and post-conditions turned
out to be hugely inefficient. A primary reason for this is the incompleteness
in the requirement refinement mentioned earlier. While Req.1 in its natural

1For an introduction to branching-time logic, refer [59].

28

4.2 Towards Provable Correctness and Completeness

language form proved to be sufficient to work with abstract techniques like
SCT and model checking, it had to be further broken down in the form of
program annotations for meaningful analysis using the deductive framework
in SPARK. However, it should not be overlooked that verification of imple-
mentation specific safety-critical properties such as division-by-zero, overflow,
etc., is automatically done in SPARK with no additional effort.

4.2 Towards Provable Correctness and
Completeness

An important take-away message from this thesis is the need for an integrated
formal approach to provide completeness in the safety argument. From Pa-
per A and this current chapter of the thesis, we get several insights on the
advantages and limitations of the different approaches. At the same time, it
is also evident that no method on its own can provide a sufficiently complete
safety argument.
The verification techniques in SCT and model checking work on abstract

models of the system. Therefore, any correctness proof provided by the
method is bound to the model. On the other hand, as seen in Paper A,
the deductive framework in SPARK is best suited to verify source code at
the implementation level. With such a distinction, experience from Paper A
clearly highlights the importance of the verification objective as a factor that
affects the choice of the formal method.

The abstract methods like SCT and model checking are indeed best suited
to prove correctness of the design in early stages of the development process.
However, the use of such methods does not preclude the need for rigour in the
implementation stages of the development process. Certainly, there are other
ways like strict coding guidelines and standards that can be combined with
traditional software testing to assess the quality of the implemented source
code. In the end, the question of whether evidence from such arguments meets
the rigour provided by a formal proof will be decisive. An ideal approach for
the safe deployment of LSM would be to introduce the abstract methods in
the conceptual design stages and finally use SPARK to have a formally verified
implementation of the same.
Another factor that affects the use of formal verification to prove correctness

is their ease of integration with the existing software development processes.

29

Chapter 4 Provably Correct Decision-Making

With recent advances in continuous software development practices [77], [78],
the need for automated development tools that seamlessly integrate into the
software pipeline is increased. Such disruptions in the processes have raised
concerns for the development of safety-critical systems [79], [80]. In Paper A, it
was observed that tools like Supremica and TLA+ are standalone tools with
low compatibility with other conventional development tools. However, results
from Paper B and Paper C demonstrate that improvements can be made in
this regard. The model-based safety analysis approach using Supremica in
Paper B is successfully integrated with a systems engineering tool [81] that
is widely used in the automotive industry. The formal models automatically
learnt using the learning setup in Paper C can also be directly imported into
Supremica for subsequent analysis.

4.3 Models - Good, Bad, and Useful
As mentioned in the previous section, the validity of the correctness proof di-
rectly corresponds to the validity of the formal model. To answer the question
of what would make the model and thereby the proof invalid, two main con-
cerns come to the fore. One, the errors introduced in the modelling process.
Two, errors in the assumptions made about the model. Unsurprisingly, these
concerns are not specific to the case studies in this thesis but rather a general
threat to formal approach based arguments [15], [49].
In Paper A, an existing implementation of the decision-making software

was used to manually obtain the formal models in the three different ap-
proaches2. To overcome the problem of potentially error-prone manual mod-
elling, Paper C presents one possible solution that automatically learns the
formal models directly from the implemented code. However, the model vali-
dation in Paper A and Paper C was primarily done by simulation and manual
reviews. While the approach in Paper C is promising, more such empirical
case studies need to be done to achieve sufficient confidence in scaling the
approach.
A significant part of the manual effort needed in SPARK is in obtaining

the program annotations that accurately formalize the safety requirements.
A fundamental trade-off exists between the level of proof automation and the

2In the case of SPARK, the code was re-implemented using Ada to make use of the formal
verification framework.

30

4.3 Models - Good, Bad, and Useful

expressiveness of the underlying logic in the deductive framework. There-
fore, a correctness proof for complex safety requirements would require higher
logical expressiveness, thereby making manual effort inevitable.
Formal models of the LSM were obtained manually in Paper A and au-

tomatically in Paper C. In both these processes, certain assumptions and
abstractions of the model had to be made. For instance, to formally reason
about the LSM , only the decision logic was modelled and its interactions with
the other components of the lane change module such as the strategic planner
(Figure 1 in Paper A) were assumed to be correct. Such interactions and
external dependencies of the LSM were abstracted and modelled as discrete
variables that affect the state transitions of the model.
As discussed in Paper A and Paper C, these assumptions and abstractions

had to be made to deal with the well known state-space explosion problem
associated with approaches like SCT and model checking. In some cases, such
an abstraction was forced due to the limitations in expressiveness of the un-
derlying formalism. For example, the decision on whether to change lane or
not is dependent on the assessment of whether there is sufficient time to safely
(collision-free) move to the new lane. Such an assessment involves state vari-
ables that vary continuously with time. Clearly, this notion of continuous state
change requires suitable abstractions in the modelling formalisms of the SCT
and model checking approaches discussed in this thesis. Since formal verifica-
tion in SPARK is applied at the source-code level, we only have to deal with
arithmetic manipulations of the supported data-types. However, the challenge
is manifested in the form of extensive program annotations and the complex
proof effort required to even prove simple functional safety requirements.

Such modelling inaccuracies also highlight the implicit trade-off between
false alarms and vacuous truth in these methods. While abstracting too many
details increases the chance of potential false alarms, having a model with finer
details and restrictive constraints could potentially end up with a proof that is
vacuously true. Since it is quite evident that assessing the situation is crucial
for the correctness of decision-making in AD, it is definitely beneficial to resort
to a logical formalism that can capture both discrete state changes as well as
the continuous dynamics of the system. Having such a formalism allows us to
reason about a model that is closer to reality so that the risk of having invalid
proofs due to invalid assumptions is reduced. This brings us to the field of
hybrid system verification that is briefly described in the next section.

31

Chapter 4 Provably Correct Decision-Making

4.4 Hybrid System Verification
By hybrid systems, we mean mathematical models of systems that combine
discrete dynamics (behaviour that changes discretely) with continuous dy-
namics (behaviour that changes continuously with time). A logical formalism
that supports the specification and verification of hybrid systems is differen-
tial dynamic logic (dL) [46], [47]. KeYmaera X [82] is a theorem prover that
implements dL and its associated verification techniques. dL has been used
to model and prove properties of hybrid systems in automotive [32], [83], [84]
and autonomous robotics [85].
To model hybrid systems, dL has the notation of hybrid programs (HP) [46],

[47]. Hybrid programs consist of different program statements including the
use of differential equations to describe continuous behaviour. A summary of
the program statements in HP, taken from [86], is shown in Table 4.1.

Statement Effect
α;β sequential composition where β starts after α finishes
α ∪ β nondeterministic choice, follow either α or β
α∗ nondeterministic repetition, repeat α n times for any n ∈ N0
x := θ discrete assignment of the value of term θ to variable x
x := ∗ nondeterministic assignment of an arbitrary real number to x
?F test if formula F holds in the current state, abort otherwise
(x′1 = θ1, . . . ,
x′n = θn&F)

continuous evolution of xi along the differential equation system
x′i = θ restricted to evolution domain F

Table 4.1: Statements of hybrid programs from [86]. F is a first-order formula,
α, β are hybrid programs.

The nondeterministic operators help address two critical aspects in proving
correctness of AD: (i) they can be used to describe unknown behaviour, which
is typically the case in modelling the highly unpredictable environment for
AD systems; (ii) nondeterminism helps achieve a maximally permissive proof
of correctness by reducing the dependency of the proof on the assumptions
in the model. For example, to prove the correctness of a decision-making
algorithm, its interactions with the other components (e.g. sensor fusion,
planning, etc.) in the AD system can be modelled with nondeterministic
behaviour. In such a case, a correctness proof of the decision-making algorithm
is free from assumptions on the component interactions and would still be
valid if changes were later introduced in the implementation of the other

32

4.4 Hybrid System Verification

components.
The formulas of dL include formulas of first-order logic of real arithmetic

and the modal operators [α] and 〈α〉 for any HP α [46], [47]. The set of
formulas generated by dL is given by the following grammar

P,Q ::= θ1 ∼ θ2 | ¬P | P ∧Q | P ∨Q | P → Q | P ↔ Q | ∀xP | ∃xP | [α]P | 〈α〉P

where P,Q are dL formulas, θ1, θ2 are polynomial terms (arithmetic expres-
sions) over reals, ∼ is any operator in {<,≤,=, 6=,≥, >}, x is a variable, and
α is an HP. The dL formula 〈α〉P expresses that there is at-least one non-
aborting run of α that leads to a state in which the dL formula P is true. The
dL formula [α]P expresses that every non-aborting run of HP α leads to a state
in which the the dL formula P is true. Similarly, to specify the correctness
of the HP α, we use a dL formula of the form P → [α]Q, which states that
if started at an initial state where formula P is true, then all (non-aborting)
runs of α only lead to states where formula Q is true. In our context of AD,
this can easily be translated to a dL formula that reflects the assume-guarantee
type of requirement:

(assume)→ [HP] (guarantee) (4.1)

where HP is the hybrid program describing the system, which includes discrete
and continuous dynamics. HP can further be refined using the sequential
operator (;) in dL as:

[HP] , [(env; ctrl; plant)∗] (4.2)

where env models the behaviour of the environment, while ctrl, and plant

model the discrete and continuous behaviour, respectively. In the following
sections, an illustration of how dL can be used to model a decision and control
component of an AD system is presented. Proving the correctness of the
component is ongoing work and the following sections give a brief discussion
of the current research direction.

The Safety Monitor

The illustrative example used in this section is the safety monitor, which
is a part of the decision and control sub-system in an autonomous vehicle.

33

Chapter 4 Provably Correct Decision-Making

During normal driving conditions, the autonomous vehicle (hereafter referred
as the ego-vehicle) is subjected to different types of constraints, for instance
constraints to ensure safe vehicle motion, constraints for smooth and efficient
driving, etc. The safety constraints are crucial to keep a safe speed with
respect to the road and other road users. The safety constraints restrict the
speed of the ego-vehicle to deal with threats in the surrounding traffic. The
constraints are set by a pair of values, a critical speed, vCrit, and a critical
position, xCrit. The critical speed vCrit is the estimated maximum speed
that the ego-vehicle can have at position xCrit in order to guarantee safety.
The objective of the safety monitor is to calculate the required acceleration
to fulfil the safety constraint at all times.
A simplified overview of the system architecture is presented in Fig. 4.1. De-

pending on the traffic state and the vehicle state information received from the
sense sub-system, the constraint generation component calculates and com-
municates the constraint to the threat assessment component of the safety
monitor. Based on the current vehicle state and the constraint, the safety
monitor performs a threat assessment and calculates an acceleration value,
aSafe which is the acceleration required to fulfil the safety constraint. In
addition, the decision and control subsystem also includes a nominal con-
trol component which calculates a nominal acceleration request aNom. This
acceleration request from the nominal control block is responsible for the ego-
vehicle operation under normal driving conditions. The nominal control is a
representation of any feature in the ego-vehicle (for instance comfort control,
cruise control, etc.) and therefore at any time it can request to accelerate or
decelerate at will depending on the respective objective.

Vehicle	Control Actuators

ACT

Sensors Sensor
Fusion

SENSE

DECISION	&	CONTROL

Constraint
Generation

Decision-Making

Threat	Assessment

Nominal	Control

SAFETY	MONITOR

Figure 4.1: System architecture of the safety monitor

34

4.4 Hybrid System Verification

The objective of the vehicle control component is to determine a control
policy to solve the set-point tracking problem where it tracks the acceler-
ation request received. The interactions between the different components
in the decision and control module and with vehicle control is intentionally
not shown in Figure 4.1 as one of the research questions here is whether dL
and KeYmaera X could be used to identify a safe system architecture. For
instance, whether the safety monitor needs to know aNom for safe decision-
making, and under what conditions should vehicle control follow aSafe and
aNom, are important questions that need to be answered.
In summary, nominal control is responsible for normal driving conditions

and if the ego-vehicle is about to violate the safety constraint, the safety
monitor ensures safety by issuing brake commands through aSafe. Since the
safety monitor is responsible for safe and emergency braking, it has higher
braking capabilities than the nominal control.
From the description, it is obvious that in order to reason about the cor-

rectness of the safety monitor, we need to consider the continuous dynamics
as well as the discrete control decisions in our model. The primary objective
of the formal design process is to provide a strong formal argument that the
control decisions will always be safe, i.e., the ego-vehicle at position x and
velocity v always respects the safety constraint, and the ego-vehicle speed
v never exceeds vCrit at the critical position xCrit. Therefore, the safety
guarantee to prove is given by,

guarantee ≡ (x ≥ xCrit→ v ≤ vCrit). (4.3)

Ego-vehicle Motion Model
While it is beneficial to have a model that is close to reality, a complex model
increases the proof complexity and traceability. An efficient workflow is to
start simple and develop increasingly complex models until the desired model
fidelity is achieved. In that vein, we first start with a constant acceleration
model, i.e., the position x of the ego-vehicle is given by x′′ = a to capture
the continuous dynamics. In this model, the acceleration values are applied
instantaneously and remain constant between subsequent control decisions. In
addition, since we focus on the safety monitor, we do not model the algorithms
in the vehicle control and instead assume a control policy that faithfully follows
the acceleration requests. For instance, an acceleration request of a = 5 m/s2

35

Chapter 4 Provably Correct Decision-Making

is instantaneously applied and its effect is observed in the continuous evolution
of the differential system. With these considerations, the ego-vehicle motion
model is:

motion ≡ t := 0; {x′ = v, v′ = a, t′ = 1 & v ≥ 0 ∧ t ≤ T}. (4.4)

Based on the constant acceleration model, the time derivative of the ego-
vehicle’s position x is its velocity v and the time derivative of v is the acceler-
ation a, as given by the differential equations x′ = v and v′ = a respectively.
The sample time of the system is modelled with a timer t that is reset to
t := 0 before the differential system evolves. The evolution of the timer is
given by the differential equation t′ = 1 and is bound by the evolution do-
main constraint t ≤ T . Evolution domain constraints in differential equations
introduce bounds on the continuous dynamics and restricts the continuous
evolution of the system to stay within that domain [47]. Thus the system
follows differential equation t′ = 1 for any duration while inside the region
t ≤ T , but is never allowed to leave that region. Therefore the system evo-
lution stops before t ≤ T evaluates to false, for the discrete control to make
appropriate decisions. Intuitively, this captures the notion that the system
will ensure that a discrete control decision is made after at most T time units.
Similarly, another evolution domain v ≥ 0 is included to capture the notion
that braking with negative acceleration value does not make the ego-vehicle
drive backwards.

Constraint Generation

The constraint generation module calculates and updates the constraints xCrit
and vCrit. One possible approach here is to model the algorithm used as a
hybrid program and subsequently prove the safety guarantee (4.3). However,
such an approach will only provide the safety argument for one such implemen-
tation of the constraint generation. In order to have a maximally permissive
design and a safety argument that covers a wide variety of constraint gener-
ation algorithms, we make use of the nondeterministic assignment as shown
in (4.5). In the model, it also necessary to ensure that the constraint genera-
tion does not pick arbitrary values that are impossible to satisfy like negative
critical speed and constraints that are beyond the physical capabilities of the

36

4.4 Hybrid System Verification

ego-vehicle.

cg ≡ xCrit := ∗; vCrit := ∗; ? (vCrit ≥ 0 ∧ limit) (4.5)
limit ≡ (v2 − vCrit2) ≤ 2 aMinS (xCrit-x) (4.6)

The test condition in (4.5) ensures that the assigned arbitrary constraints
satisfy the physics of the vehicle. The condition limit (4.6) characterizes the
relationship between the ego-vehicle’s current speed v, position x, maximum
braking capability of the safety monitor aMinS, and the safety constraint. This
condition can be calculated by solving the differential equations of the motion
model in (4.4):

{x′ = v, v′ = a}.

Integrating the above differential equations over time, we get the following set
of equations:

x = x0 + v0t+ at2

2 (4.7)

v = v0 + at (4.8)

where x0 and v0 are the initial position and initial velocity respectively.
From (4.8), we can see that using the maximum braking capability −aMinS,
the time required to reach the critical velocity vCrit from current velocity v
is given by

t = v − vCrit
aMinS

. (4.9)

Since (4.7) gives the solution to the distance travelled, we can calculate the
braking distance travelled while slowing down from current velocity v to crit-
ical velocity vCrit as the minimum distance for the critical position xCrit

xCrit ≥ x+ v

(
v − vCrit
aMinS

)
− aMinS

2

(
v − vCrit
aMinS

)2
(4.10)

It is straightforward to simplify (4.10) to obtain the equivalent condition limit
in (4.6).
Finally, to put everything together so that it corresponds to the (assume-

37

Chapter 4 Provably Correct Decision-Making

guarantee) formula in (4.1), we get the following refinement:

(assume)→ [HP] (guarantee)
≡ (assume)→ [(env; ctrl; plant)∗] (guarantee)

≡ (assume)→ [(cg; ctrl;motion)∗] (x ≥ xCrit→ v ≤ vCrit)

The challenge in obtaining a safety proof for the safety monitor is to identify
the conditions for safe decision-making in ctrl and how the interactions of the
safety monitor with the other components affect those decisions. dL and KeY-
maera X provides the necessary logical formalism and verification techniques
to achieve this, and this is one of the immediate future work direction.

38

CHAPTER 5

Summary of Included Papers

Paper A In Paper A, three different formal verification approaches, namely
supervisory control theory, model checking, and deductive verification
are used to formally verify an existing decision-making software in an
autonomous vehicle. The three approaches are evaluated to identify
(i) the challenges in applying formal verification to AD and (ii) the
factors that affect the choice of the verification method. Insights from
Paper A show the need for an integrated formal approach to prove cor-
rectness. Paper A discusses how the verification objective differs in the
three approaches and presents the challenges in formally modelling and
specifying the decision-making software.

Paper B One of the challenges identified in Paper A is the lack of adequate
documented requirements for the formal verification process. Safety
analysis methods like Fault Tree Analysis is widely used to identify
high-level safety requirements. By introducing more rigour using formal
methods, challenges in the requirement refinement process can be ad-
dressed. In this regard, Paper B presents a model-based safety analysis
approach using Supervisory Control Theory. In Paper B, a systematic
approach to incrementally obtain formal models from a fault tree is pre-

39

Chapter 5 Summary of Included Papers

sented. Paper B also shows how the formal models can be analysed in
Supremica and also how important quality factors like minimal cut sets
can be calculated in the presented approach.

Paper C Another challenge identified in Paper A is the manual effort re-
quired in obtaining formal models. Manual construction of formal mod-
els is expensive, error-prone, and intractable for large systems. As one
possible solution to this problem, Paper C applies active automata learn-
ing techniques to obtain formal models of the decision-making software
studied in Paper A. Results from Paper C demonstrate the feasibility
of such automated techniques for automotive industrial use. Two such
learning algorithms are evaluated and practical challenges in their ap-
plication are presented. Furthermore, insights from Paper C show that
such techniques could potentially pave way for the widespread adoption
of formal methods to guarantee software correctness of AD systems.

40

CHAPTER 6

Concluding Remarks and Future Work

This thesis started with the hypothesis that formal methods, especially formal
verification, can be used to prove the correctness of AD systems and thereby
aid in their safe deployment. Results from this thesis provide strong evidence
to support that argument. To achieve the overall goal of establishing formal
verification as an efficient tool in AD software development, three research
questions are considered. The first research question, RQ 1 is to identify
the factors that affect the application of formal verification and the current
challenges in existing methods. Based on the results and insights from the
included papers, some important challenges are identified and discussed. A
key obstacle to the application of formal verification is the lack of adequate
requirements at all levels of the development process. This thesis identifies
the need for the introduction of more rigour in the requirement refinement
process and presents one possible solution by using a formal model-based
safety analysis approach.
Another key finding is the need for an integrated formal approach to prove

correctness and to provide a complete safety argument. Three different formal
approaches are evaluated and a discussion on how the verification objective
differs in each of them is provided. Finally, two principal concerns associated

41

Chapter 6 Concluding Remarks and Future Work

with the formal modelling process are identified and discussed; one: modelling
inaccuracies due to manual errors; and two: the validity of the assumptions
and the abstractions made in the formal model. Such inaccuracies could
potentially result in an invalid correctness proof and viable options to combat
them are presented.
The second research question, RQ 2 concerns how to address the iden-

tified challenges. One way to address the problems associated with man-
ual modelling, is to automatically learn the formal models directly from the
code. Similarly, to address the gaps in the requirement refinement process,
the model-based safety analysis approach discussed in Paper B can be used
to systematically analyse safety models and incrementally obtain safety re-
quirements at different levels as discussed in Chapter 4. Demonstrations from
Paper B and Paper C show that these solutions can successfully be integrated
with day-to-day software development activities, thereby providing valuable
insights to answer RQ 3.

6.1 Future Work
Based on the insights obtained, it is quite evident that in order to reason
about the correctness of decision-making in AD, it is crucial to also reason
about the correctness of the algorithms assessing the traffic situation and
environment. Therefore, proving correctness using a formalism that supports
hybrid systems such as the differential dynamic logic discussed in Section 4.4
is necessary. One possible future research direction is to investigate whether
such an approach enables us to obtain a correctness proof that provides even
a higher level of safety assurance than the methods discussed in Paper A. The
other observation made is the need for many more empirical studies to further
strengthen the conclusions made and possibly also obtain new ones regarding
provable correctness of AD. Any future work in this direction is most definitely
rewarding.

42

References

[1] World Health Organization (WHO), Road Traffic Injuries, https://
www.who.int/news- room/fact- sheets/detail/road- traffic-
injuries, Accessed: 2020-08-02, 2020.

[2] National Highway Traffic Safety Administration (NHTSA), Automated
Vehicles for Safety, https://www.nhtsa.gov/technology-innovation/
automated-vehicles-safety, Accessed: 2020-08-02.

[3] T. Litman, Autonomous vehicle implementation predictions. Victoria,
Canada: Victoria Transport Policy Institute, 2020.

[4] SAE On-Road Automated Vehicle Standards Committee and others,
“Taxonomy and definitions for terms related to driving automation sys-
tems for on-road motor vehicles”, SAE International: Warrendale, PA,
USA, 2018.

[5] Society of Automotive Engineers (SAE) International, SAE Standards:
J3016 automated-driving graphic update, https://www.sae.org/news/
2019/01/sae- updates- j3016- automated- driving- graphic, Ac-
cessed: 2020-08-02, 2019.

[6] The Insurance Institute for Highway Safety, New studies highlight driver
confusion about automated systems, https://www.iihs.org/news/
detail/new-studies-highlight-driver-confusion-about-automated-
systems, Accessed: 2020-08-02, 2019.

43

https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
https://www.sae.org/news/2019/01/sae-updates-j3016-automated-driving-graphic
https://www.sae.org/news/2019/01/sae-updates-j3016-automated-driving-graphic
https://www.iihs.org/news/detail/new-studies-highlight-driver-confusion-about-automated-systems
https://www.iihs.org/news/detail/new-studies-highlight-driver-confusion-about-automated-systems
https://www.iihs.org/news/detail/new-studies-highlight-driver-confusion-about-automated-systems

References

[7] MIT Technology Review, The three challenges keeping cars from being
fully autonomous, https://www.technologyreview.com/2019/04/23/
103181/the-three-challenges-keeping-cars-from-being-fully-
autonomous/, Accessed: 2020-08-02, 2019.

[8] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of
motion planning and control techniques for self-driving urban vehicles”,
IEEE Transactions on intelligent vehicles, vol. 1, no. 1, pp. 33–55, 2016.

[9] A. Mohamed, J. Ren, M. El-Gindy, H. Lang, and A. Ouda, “Literature
survey for autonomous vehicles: Sensor fusion, computer vision, system
identification and fault tolerance”, International Journal of Automation
and Control, vol. 12, no. 4, pp. 555–581, 2018.

[10] Z. Wang, Y. Wu, and Q. Niu, “Multi-sensor fusion in automated driving:
A survey”, IEEE Access, vol. 8, pp. 2847–2868, 2019.

[11] W. Schwarting, J. Alonso-Mora, and D. Rus, “Planning and decision-
making for autonomous vehicles”, Annual Review of Control, Robotics,
and Autonomous Systems, 2018.

[12] N. Kalra and S. M. Paddock, “Driving to safety: How many miles of
driving would it take to demonstrate autonomous vehicle reliability?”,
Transportation Research Part A: Policy and Practice, vol. 94, pp. 182–
193, 2016.

[13] P. Koopman and M. Wagner, “Challenges in autonomous vehicle testing
and validation”, SAE International Journal of Transportation Safety,
vol. 4, no. 1, pp. 15–24, 2016.

[14] Koopman, Philip and Wagner, Michael, “Autonomous vehicle safety: An
interdisciplinary challenge”, IEEE Intelligent Transportation Systems
Magazine, vol. 9, no. 1, pp. 90–96, 2017.

[15] P. Koopman, A. Kane, and J. Black, “Credible autonomy safety argu-
mentation”, in 27th Safety-Critical Systems Symposium, 2019.

[16] S. Riedmaier, T. Ponn, D. Ludwig, B. Schick, and F. Diermeyer, “Sur-
vey on scenario-based safety assessment of automated vehicles”, IEEE
Access, vol. 8, pp. 87 456–87 477, 2020.

[17] The Insurance Institute for Highway Safety, Fatality Facts 2018, https:
//www.iihs.org/topics/fatality-statistics/detail/state-by-
state, Accessed: 2020-08-02, 2018.

44

https://www.technologyreview.com/2019/04/23/103181/the-three-challenges-keeping-cars-from-being-fully-autonomous/
https://www.technologyreview.com/2019/04/23/103181/the-three-challenges-keeping-cars-from-being-fully-autonomous/
https://www.technologyreview.com/2019/04/23/103181/the-three-challenges-keeping-cars-from-being-fully-autonomous/
https://www.iihs.org/topics/fatality-statistics/detail/state-by-state
https://www.iihs.org/topics/fatality-statistics/detail/state-by-state
https://www.iihs.org/topics/fatality-statistics/detail/state-by-state

References

[18] Philip Koopman, Potentially deadly automotive software defects, https:
/ / betterembsw . blogspot . com / 2018 / 09 / potentially - deadly -
automotive-software.html, Accessed: 2020-08-02, 2018.

[19] Original Equipment Suppliers Association, Automotive Defect and Re-
call Report, https://www.oesa.org/sites/default/files/automotive-
defect-recall-report-2019.pdf, Accessed: 2020-08-02, 2019.

[20] Global News, Tesla’s Autopilot system faces increased scrutiny after 3
crashes, 3 deaths, https://globalnews.ca/news/6363342/tesla-
autopilot-crashes-deaths/, Accessed: 2020-08-02, 2020.

[21] The NewYork Times, Tesla Autopilot System Found Probably at Fault
in 2018 Crash, https://www.nytimes.com/2020/02/25/business/
tesla-autopilot-ntsb.html, Accessed: 2020-08-02, 2020.

[22] Business Insider, Uber self-driving cars were involved in 37 crashes before
a fatal incident, https://www.businessinsider.com/uber- test-
vehicles-involved-in-37-crashes-before-fatal-self-driving-
incident-2019-11?r=US&IR=T, Accessed: 2020-08-02, 2019.

[23] M. Blanco, J. Atwood, S. M. Russell, T. Trimble, J. A. McClafferty, and
M. A. Perez, “Automated vehicle crash rate comparison using natural-
istic data”, Virginia Tech Transportation Institute, Tech. Rep., 2016.

[24] WIRED, Google’s Self-Driving Car Caused Its First Crash, https://
www.wired.com/2016/02/googles-self-driving-car-may-caused-
first-crash/, Accessed: 2020-08-02, 2016.

[25] J. Souyris, V. Wiels, D. Delmas, and H. Delseny, “Formal verification
of avionics software products”, in International symposium on formal
methods, Springer, 2009, pp. 532–546.

[26] C. Bernardeschi, A. Fantechi, S. Gnesi, S. Larosa, G. Mongardi, and D.
Romano, “A formal verification environment for railway signaling sys-
tem design”, Formal Methods in System Design, vol. 12, no. 2, pp. 139–
161, 1998.

[27] M. Lawford and A. Wassyng, “Formal verification of nuclear systems:
Past, present, and future”, in 1st International Workshop on Critical
Infrastructure Safety and Security (CrISS-DESSERT’11), vol. 1, 2011,
pp. 43–51.

45

https://betterembsw.blogspot.com/2018/09/potentially-deadly-automotive-software.html
https://betterembsw.blogspot.com/2018/09/potentially-deadly-automotive-software.html
https://betterembsw.blogspot.com/2018/09/potentially-deadly-automotive-software.html
https://www.oesa.org/sites/default/files/automotive-defect-recall-report-2019.pdf
https://www.oesa.org/sites/default/files/automotive-defect-recall-report-2019.pdf
https://globalnews.ca/news/6363342/tesla-autopilot-crashes-deaths/
https://globalnews.ca/news/6363342/tesla-autopilot-crashes-deaths/
https://www.nytimes.com/2020/02/25/business/tesla-autopilot-ntsb.html
https://www.nytimes.com/2020/02/25/business/tesla-autopilot-ntsb.html
https://www.businessinsider.com/uber-test-vehicles-involved-in-37-crashes-before-fatal-self-driving-incident-2019-11?r=US&IR=T
https://www.businessinsider.com/uber-test-vehicles-involved-in-37-crashes-before-fatal-self-driving-incident-2019-11?r=US&IR=T
https://www.businessinsider.com/uber-test-vehicles-involved-in-37-crashes-before-fatal-self-driving-incident-2019-11?r=US&IR=T
https://www.wired.com/2016/02/googles-self-driving-car-may-caused-first-crash/
https://www.wired.com/2016/02/googles-self-driving-car-may-caused-first-crash/
https://www.wired.com/2016/02/googles-self-driving-car-may-caused-first-crash/

References

[28] G. Bahig and A. El-Kadi, “Formal verification of automotive design in
compliance with iso 26262 design verification guidelines”, IEEE Access,
vol. 5, pp. 4505–4516, 2017.

[29] V. Todorov, F. Boulanger, and S. Taha, “Formal verification of auto-
motive embedded software”, in Proceedings of the 6th Conference on
Formal Methods in Software Engineering, 2018, pp. 84–87.

[30] A. Zita, S. Mohajerani, and M. Fabian, “Application of formal verifica-
tion to the lane change module of an autonomous vehicle”, in 2017 13th
IEEE Conference on Automation Science and Engineering (CASE), IEEE,
2017, pp. 932–937.

[31] D. Gurov, C. Lidström, M. Nyberg, and J. Westman, “Deductive func-
tional verification of safety-critical embedded c-code: An experience re-
port”, in Critical Systems: Formal Methods and Automated Verification,
Springer, 2017, pp. 3–18.

[32] S. M. Loos, A. Platzer, and L. Nistor, “Adaptive cruise control: Hybrid,
distributed, and now formally verified”, in International Symposium on
Formal Methods, Springer, 2011, pp. 42–56.

[33] RTCA (Firm). SC 167, Software considerations in airborne systems and
equipment certification. RTCA, Incorporated, 2011.

[34] International Electrotechnical Commission, “IEC 62279: Railway applications—
Communications, signalling and processing systems—Software for rail-
way control and protection systems”, International Electrotechnical Com-
mission: Geneva, Switzerland, 2002.

[35] ISO, “ISO 26262:2018–Road vehicles–Functional safety”, International
Standard ISO/FDIS, 2018.

[36] C. Bergenhem, R. Johansson, A. Söderberg, J. Nilsson, J. Tryggvesson,
M. Törngren, and S. Ursing, “How to reach complete safety requirement
refinement for autonomous vehicles”, in CARS 2015 – Critical Automo-
tive applications: Robustness & Safety, Paris, France, 2015.

[37] N. B. Ruparelia, “Software development lifecycle models”, ACM SIG-
SOFT Software Engineering Notes, vol. 35, no. 3, pp. 8–13, 2010.

[38] ANSI/UL, ANSI/UL 4600 - Standard for Evaluation of Autonomous
Products, https://ul.org/UL4600, 2020.

46

https://ul.org/UL4600

References

[39] ISO, “ISO/PAS 21448:2019–Road vehicles–Safety of the intended func-
tionality”, International Standard ISO/FDIS, 2019.

[40] S. Agerholm and P. G. Larsen, “A lightweight approach to formal meth-
ods”, in International Workshop on Current Trends in Applied Formal
Methods, Springer, 1998, pp. 168–183.

[41] J. B. Almeida, M. J. Frade, J. S. Pinto, and S. M. De Sousa, Rigorous
software development: an introduction to program verification. Springer
Science & Business Media, 2011.

[42] G. J. Holzmann, “The model checker spin”, IEEE Transactions on soft-
ware engineering, vol. 23, no. 5, pp. 279–295, 1997.

[43] W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, P. H. Schmitt, and M.
Ulbrich, “Deductive software verification–the key book”, Lecture notes
in computer science, vol. 10001, 2016.

[44] M. Kwiatkowska, G. Norman, and D. Parker, “Prism 4.0: Verification
of probabilistic real-time systems”, in International conference on com-
puter aided verification, Springer, 2011, pp. 585–591.

[45] M. Althoff, “Cora 2016 manual”, Technische Universitat Munchen, Garch-
ing, Germany, 2016.

[46] A. Platzer, “Differential dynamic logic for hybrid systems”, Journal of
Automated Reasoning, vol. 41, no. 2, pp. 143–189, 2008.

[47] Platzer, André, Logical foundations of cyber-physical systems. Springer,
2018, vol. 662.

[48] J. Guiochet, M. Machin, and H. Waeselynck, “Safety-critical advanced
robots: A survey”, Robotics and Autonomous Systems, vol. 94, pp. 43–
52, 2017.

[49] M. Luckcuck, M. Farrell, L. A. Dennis, C. Dixon, and M. Fisher, “Formal
specification and verification of autonomous robotic systems: A survey”,
ACM Computing Surveys (CSUR), vol. 52, no. 5, pp. 1–41, 2019.

[50] P. J. Ramadge and W. M. Wonham, “The control of discrete event
systems”, Proceedings of the IEEE, vol. 77, no. 1, pp. 81–98, 1989.

[51] R. Malik, K. Akesson, H. Flordal, and M. Fabian, “Supremica-An effi-
cient tool for large-scale discrete event systems”, IFAC-PapersOnLine,
vol. 50, no. 1, pp. 5794–5799, 2017, 20th IFAC World Congress, issn:
2405-8963.

47

References

[52] S. Mohajerani, R. Malik, and M. Fabian, “A framework for composi-
tional nonblocking verification of extended finite-state machines”, Dis-
crete Event Dynamic Systems, vol. 26, no. 1, pp. 33–84, 2016.

[53] J. Krook, A. Zita, R. Kianfar, S. Mohajerani, and M. Fabian, “Modeling
and synthesis of the lane change function of an autonomous vehicle”,
IFAC-PapersOnLine, vol. 51, no. 7, pp. 133–138, 2018.

[54] M. Skoldstam, K. Akesson, and M. Fabian, “Modeling of discrete event
systems using finite automata with variables”, in 2007 46th IEEE Con-
ference on Decision and Control, IEEE, 2007, pp. 3387–3392.

[55] R. Malik, “Programming a fast explicit conflict checker”, in 2016 13th
International Workshop on Discrete Event Systems (WODES), IEEE,
2016, pp. 438–443.

[56] E. M. Clarke and E. A. Emerson, “Design and synthesis of synchroniza-
tion skeletons using branching time temporal logic”, in Workshop on
Logic of Programs, Springer, 1981, pp. 52–71.

[57] J.-P. Queille and J. Sifakis, “Specification and verification of concur-
rent systems in CESAR”, in International Symposium on programming,
Springer, 1982, pp. 337–351.

[58] A. Pnueli, “The temporal logic of programs”, in 18th Annual Symposium
on Foundations of Computer Science (sfcs 1977), IEEE, 1977, pp. 46–
57.

[59] C. Baier and J.-P. Katoen, Principles of model checking. MIT press,
2008.

[60] E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem, Handbook of
model checking. Springer, 2018.

[61] E. M. Clarke and Q. Wang, “25 Years of Model Checking”, in Interna-
tional Andrei Ershov Memorial Conference on Perspectives of System
Informatics, Springer, 2014, pp. 26–40.

[62] L. Lamport, “The temporal logic of actions”, ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), vol. 16, no. 3, pp. 872–
923, 1994.

[63] L. Lamport, The TLA+ home page, https://lamport.azurewebsites.
net/tla/tla.html, Accessed: 2019-04-22.

48

https://lamport.azurewebsites.net/tla/tla.html
https://lamport.azurewebsites.net/tla/tla.html

References

[64] L. Lamport, Specifying systems: the TLA+ language and tools for hard-
ware and software engineers. Addison-Wesley Longman Publishing Co.,
Inc., 2002.

[65] C. Newcombe, “Why amazon chose TLA+”, in International Conference
on Abstract State Machines, Alloy, B, TLA, VDM, and Z, Springer,
2014, pp. 25–39.

[66] C. A. R. Hoare, “An axiomatic basis for computer programming”, Com-
munications of the ACM, vol. 12, no. 10, pp. 576–580, 583, Oct. 1969.

[67] N. Kosmatov, V. Prevosto, and J. Signoles, “A lesson on proof of pro-
grams with Frama-C. Invited tutorial paper”, in Tests and Proofs, M.
Veanes and L. Viganò, Eds., Springer, 2013, isbn: 978-3-642-38916-0.

[68] W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, P. Schmitt, and M. Ul-
brich, Eds., Deductive Software Verification—The KeY Book, ser. LNCS.
Springer, 2016, vol. 10001.

[69] J. Barnes, SPARK: The Proven Approach to High Integrity Software.
Altran Praxis, 2012.

[70] Barnes, John, Programming in Ada 2012. Cambridge University Press,
2014.

[71] Adacore - homepage, https://www.adacore.com/, Accessed: 2019-04-
26.

[72] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P.
Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, et al., “End to end
learning for self-driving cars”, arXiv preprint arXiv:1604.07316, 2016.

[73] F. Al-Khoury, Safety of machine learning systems in autonomous driv-
ing, 2017.

[74] J. Krook, L. Svensson, Y. Li, L. Feng, and M. Fabian, “Design and
formal verification of a safe stop supervisor for an automated vehicle”,
in 2019 International Conference on Robotics and Automation (ICRA),
IEEE, 2019, pp. 5607–5613.

[75] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event processes”, SIAM journal on control and optimization,
vol. 25, no. 1, pp. 206–230, 1987.

49

https://www.adacore.com/

References

[76] W. Wonham, K. Cai, and K. Rudie, “Supervisory control of discrete-
event systems: A brief history”, Annual Reviews in Control, vol. 45,
pp. 250–256, 2018.

[77] J. Bosch, “Continuous software engineering: An introduction”, in Con-
tinuous software engineering, Springer, 2014, pp. 3–13.

[78] S. Vöst and S. Wagner, “Towards continuous integration and continuous
delivery in the automotive industry”, arXiv preprint arXiv:1612.04139,
2016.

[79] S. Vost and S. Wagner, “Keeping continuous deliveries safe”, in 2017
IEEE/ACM 39th International Conference on Software Engineering Com-
panion (ICSE-C), IEEE, 2017, pp. 259–261.

[80] R. Kasauli, E. Knauss, B. Kanagwa, A. Nilsson, and G. Calikli, “Safety-
critical systems and agile development: A mapping study”, in 2018 44th
Euromicro Conference on Software Engineering and Advanced Applica-
tions (SEAA), IEEE, 2018.

[81] SYSTEMITE, Systemweaver, https://www.systemweaver.se/, Ac-
cessed: 2020-05-09.

[82] N. Fulton, S. Mitsch, J.-D. Quesel, M. Völp, and A. Platzer, “Keymaera
x: An axiomatic tactical theorem prover for hybrid systems”, in Inter-
national Conference on Automated Deduction, Springer, 2015, pp. 527–
538.

[83] S. Mitsch, S. M. Loos, and A. Platzer, “Towards formal verification of
freeway traffic control”, in 2012 IEEE/ACM Third International Con-
ference on Cyber-Physical Systems, IEEE, 2012, pp. 171–180.

[84] S. M. Loos and A. Platzer, “Safe intersections: At the crossing of hybrid
systems and verification”, in 2011 14th International IEEE Conference
on Intelligent Transportation Systems (ITSC), IEEE, 2011, pp. 1181–
1186.

[85] S. Mitsch, K. Ghorbal, and A. Platzer, “On provably safe obstacle avoid-
ance for autonomous robotic ground vehicles”, 2013.

[86] J.-D. Quesel, S. Mitsch, S. Loos, N. Aréchiga, and A. Platzer, “How to
model and prove hybrid systems with keymaera: A tutorial on safety”,
International Journal on Software Tools for Technology Transfer, vol. 18,
no. 1, pp. 67–91, 2016.

50

https://www.systemweaver.se/

Part II

Papers

51

PAPERA
Verification of Decision Making Software in an Autonomous

Vehicle: An Industrial Case Study

Yuvaraj Selvaraj, Wolfgang Ahrendt, Martin Fabian

Larsen K., Willemse T. (eds) Formal Methods for Industrial Critical
Systems (FMICS 2019), Lecture Notes in Computer Science,

vol 11687, pp. 143–159, Aug. 2019.
©Springer, Cham DOI: 10.1007/978-3-030-27008-7_9

https://doi.org/10.1007/978-3-030-27008-7_9

The layout has been revised.

1 Introduction and Related Work

Abstract

Correctness of autonomous driving systems is crucial as in-
correct behaviour may have catastrophic consequences. Many
different hardware and software components (e.g. sensing, de-
cision making, actuation, and control) interact to solve the
autonomous driving task, leading to a level of complexity that
brings new challenges for the formal verification community.
Though formal verification has been used to prove correctness
of software, there are significant challenges in transferring such
techniques to an agile software development process and to
ensure widespread industrial adoption. In the light of these
challenges, the identification of appropriate formalisms, and
consequently the right verification tools, has significant im-
pact on addressing them. In this paper, we evaluate the appli-
cation of different formal techniques from supervisory control
theory, model checking, and deductive verification to verify
existing decision and control software (in development) for an
autonomous vehicle. We discuss how the verification objec-
tive differs with respect to the choice of formalism and the
level of formality that can be applied. Insights from the case
study show a need for multiple formal methods to prove cor-
rectness, the difficulty to capture the right level of abstraction
to model and specify the formal properties for the verification
objectives.

1 Introduction and Related Work
Significant progress has lately been made in the global automotive industry
towards autonomous vehicles. Autonomous vehicles can potentially increase
road safety and help reduce road traffic accidents. However, these are ex-
tremely complex safety critical systems, and human safety depends on their
correctness. The level of complexity in these systems is manually intractable.
Factors like size, structure (level of interaction and communication between
different systems), environment (the physical world in the case of autonomous
vehicles), application domain etc., all contribute to the complexity. It is im-

A3

Paper A

perative that all safety critical parts of an autonomous vehicle are veritably
reliable and safe. This is a challenge for the development process due to
the complexity needed to be managed not only in the design but also in the
verification and validation process.
An autonomous vehicle consists of many software and hardware components

interacting to solve different tasks, ranging from sensing, decision making, and
planning to actuation and control. The level of complexity involved may lead
to subtle but potentially dangerous bugs arising due to unforeseen edge cases,
errors in the software design and/or implementation. Coverage based test-
ing is a widely adopted work flow in many large scale software development
companies, but exhaustive testing is not tractable. Testing can never guar-
antee absence of unintended consequences nor provide sufficient certification
evidence in all cases. Thus, there is a need for complementary methods to
guarantee system safety, and the use of formal methods for this is becoming
prevalent [1], [2].
The international standard ISO 26262 [3] provides guidance on a risk based

approach to manage, specify, develop, integrate, and verify safety critical sys-
tems in road vehicles, including various references to formal specification and
verification. Adherence to the standard can potentially ensure that system
quality is maintained, and unreasonable residual risk is avoided. The standard
is based upon the V model of product development [4] and aims at achieving
system safety through safety measures implemented at various levels of the
development process. However, the standard addresses neither specific chal-
lenges inherent to autonomous driving systems, nor the development of safety
critical software in an agile development work flow.
Thus, research is needed to solve challenges arising from such inter-disciplinary

problems, and these challenges are at-least two fold:

1. The application of formal verification to autonomous driving systems;

2. The transfer of formal verification techniques to large scale agile devel-
opment of safety critical software.

The first challenge is relatively new and is driven by recent developments in
autonomous systems. The second challenge relates to a long standing problem
of successful industrial adoption of formal techniques in software development.
However, the addition of agile methods to safety critical software development
has introduced new directions.

A4

1 Introduction and Related Work

Formal methods—with varying levels of formalisation—can be applied at
various stages of the software development process. The choice of verification
method and the expressive power of the formalism used to specify the proper-
ties is an important choice that affects the conclusions drawn from the results
of the verification process. In this paper, we evaluate three formal verifica-
tion methods and their respective formalisms to verify existing software in
an autonomous driving vehicle: Supervisory Control Theory with Extended
Finite State Machines [5], [6], Model Checking with Temporal Logic of Ac-
tions [7], Deductive Verification with contract based programming [8]. We
discuss how the verification objective differs in these methods and how mul-
tiple formal methods can help tackle the challenges in industrial autonomous
driving software development.

A recent survey [2] on formal specification and verification of autonomous
robotic systems is a comprehensive study of current state-of-the art literature
focused on formal modelling, formal specification, and formal verification of
robotic systems. It gives a summary on the challenges faced, current methods
in tackling the challenges, and the limitations of existing methods. In [9],
an overview of the challenges in designing, specifying and verifying cyber-
physical systems, particularly semi-autonomous driving systems with human
interaction is provided. [10] presents a model checking framework for veri-
fying autonomous systems with a distinguished rational ‘agent’, confined to
the system architecture level with autonomous driving as one example sce-
nario. There are prior research focused on the development of autonomous
systems in a generic sense [1], [2], surveys on tool based verification methods
and tools [11], [12], and the general industrial adoption of formal methods
technology [13]–[16].

In contrast to the literature cited above, our work is specific to autonomous
driving and we discuss a tightly coupled approach to tackle the two-fold chal-
lenge with an industrial case study. The problem description is given in
Section 2, followed by separate sections for the three different verification
approaches handled in this paper. Section 6 discusses the evaluation and in-
sights from the industrial case study. The paper concludes with some remarks
in Section 7.

A5

Paper A

2 Problem Description
Zenuity is one of the leading companies in the development of safe and reliable
autonomous driving software. A significant part of the embedded software
developed at Zenuity is safety critical. In [17], formal verification was applied
to a small part of the autonomous driving software in development and non-
conformance to a few basic specifications was reported. The work presented
in this paper is a continuation of the work started in [17].
The focus of this paper is a sub-module of the decision making and planning

module, called Lateral State Manager (LSM), which solves the sub-function
of managing modes during a lane change. A simplified overview of the system
and the interactions are shown in Fig. 1. The software module is implemented
in object-oriented MATLAB-code using several classes, each solving different
sub-problems. The interaction of the LSM class with a high level strategic
planner (Planner) and a low level planner (Path Planner) is also shown in
Fig. 1.

SENSE PATH
PLANNER CONTROLLER

HIGH LEVEL
STRATEGIC
PLANNER
(Planner)

LATERAL
STATE

MANAGER
(LSM)

DECISION MAKING AND PLANNING

Vehicle
State

Traffic
State

Lane Change
Request

Direction

Turn Indication

Control
Signals

Vehicle
State

Traffic
State

Figure 1: System overview and interactions.

The Planner in the lane change module is responsible for strategic decisions
and depending on the state of the vehicle, the Planner sends lane change
requests to the LSM, indicating the desired lane to drive in. These requests
are in the form of NoRequest, ChangeLeft, and ChangeRight. On receiving
a request, the LSM keeps track of the lane change process by managing the
different modes possible during the process, and issues commands to the Path
Planner. If a lane change is requested, the Path Planner sends control signals

A6

2 Problem Description

to the low level controller to perform a safe and efficient lane change. Due to
the inherent nature of the task to solve, the LSM implements a finite state
machine. An example of a state in the LSM state machine is State_Finished
that represents the completion of the lane change process.
A call to LSM is issued at every execution cycle. During each call, the LSM

undergoes three distinct execution stages. First, all the inputs are updated
according to the function call arguments. Second, depending on the current
state, code is executed to decide whether the system transits to a new state
or not. This code also assigns outputs and persistent variables. Finally, if a
transition is performed, the last stage executes code corresponding to the new
state entered and assigns new values to the variables.
Of course, LSM is safety critical and its correctness is crucial. In our work,

we focus on verifying properties that affect the safety of the system, i.e. a
violation of which will result in an unsafe behaviour. From a software develop-
ment perspective, these properties are typically stated as safety requirements.
In [17], one such requirement was modelled to check whether the LSM always
performs a lane change to the same lane as requested by the Planner. This
requirement was shown to be violated. Under certain circumstances the ve-
hicle could indicate to go to the right (say), and check for traffic on the right
side, but when it was clear to move into the right lane, the vehicle moved to
the left. In our work, we further strengthen the property to express definite
unsafe behaviours and the strengthened requirement is shown as Req.1 .

Req.1 : If changing lane, the lane change shall always be to the same side as
indicated.

In the following sections, we describe how formal verification is performed to
show correctness of the LSM and to identify the violation of Req.1 in the three
different methods discussed in this paper. While there are several tools and
tool based methods that support formal verification [11], [12], the choice of
the tools discussed in this paper is primarily motivated by prior case studies
with Supremica [17], [18], TLA+ [19], [20], and SPARK [21], [22] on software
systems similar in nature and scale to autonomous driving systems.

A7

Paper A

3 Supervisory Control Theory
The Supervisory Control Theory [23] (SCT) provides a framework for mod-
elling, synthesis, and verification of reactive control functions for discrete event
systems (DES), which are systems that occupy at each time instant a single
state out of its many possible ones, and transits to another state on the occur-
rence of an event. Given a DES model of a system to control, the plant, and a
specification1 of the desired controlled behaviour, the SCT provides means to
synthesize a supervisor that interacting with the plant in a closed-loop dynam-
ically restricts the event generation of the plant such that the specification is
satisfied.
Though the original SCT focused on synthesising supervisors that by con-

struction fulfil the desired properties, a dual problem of interest here is to,
given a model of a plant and specification, verify whether the specification is
fulfilled or not. So, in this paper we use ideas from SCT to formally verify
LSM , and do not focus on the synthesis of supervisors.

A DES modelling formalism appropriate in our context is finite-state ma-
chines extended with bounded discrete variables, with guards (logical expres-
sions) over the variables and actions that assign values to the variables on the
transitions [6].

Definition 1: An Extended Finite State Machine (EFSM) is a tuple E =
〈Σ, V, L,→, Li, Lm〉, where Σ is a finite set of events, V is a finite set of
bounded discrete variables, L is a finite set of locations, →⊆ L×Σ×G×A×L
is the conditional transition relation, where G and A are the respective sets of
guards and actions, Li ⊆ L is the set of initial locations, and Lm ⊆ L is the
set of marked locations.
The current state of such an Extended Finite State-Machine (EFSM) is

given by its current location together with the current values of the variables.
Thus, the state of an EFSM is not necessarily explicitly enumerated, but
can be represented symbolically. This richer structure, though with equal
expressive power, shows good modelling potential compared to ordinary finite
state machines. The expression l0

σ:[g]a−−−→ l1 denotes a transition from location
l0 to l1 labelled by event σ ∈ Σ, and with guard g ∈ G and action a ∈ A. The
transition is enabled when g evaluates to T, and on its occurrence a updates

1In the SCT framework, the specification is the property of interest to verify with respect
to the plant.

A8

3 Supervisory Control Theory

some of the values of the variables v ∈ V , thereby causing the EFSM to change
location from l0 to l1.
EFSMs naturally interact through shared variables, but they can also in-

teract through shared events, which is modelled by synchronous composition,
where common events occur simultaneously in all interacting EFSMs, or not
at all, while non-shared events occur independently. By this interaction mech-
anism a supervisor restricts the event generation of the plant; if the supervisor
has a specific event in its alphabet but has no enabled transition labelled by
that event from its current state, then the closed-loop system cannot execute
that event in the current global state. We denote the synchronous composi-
tion of two EFSMs E1 and E2 by E1 ‖ E2 [6]. As defined by [6], transitions
labelled by shared events but with mutually exclusive guards, or conflicting
actions can never occur.

3.1 Nonblocking Verification

Given a set of EFSMs E = {G1, . . . , Gn,K1, . . . ,Km} where the components
Gi (i = 1, . . . , n) represent the plant, and Kj (j = 1, . . . ,m) represent the
specification, we now want to determine whether the synchronous composi-
tion over all the components can from any reachable state always reach some
marked state. The straightforward way to do this, called the monolithic ap-
proach, is intractable for all but the smallest systems, due to the combinatorial
state-space explosion problem. Thus, more efficient approaches are needed.
One such approach that pushes the limit of what is tractable is the abstraction-

based compositional verification [24], which has shown remarkable efficiency
and manages to handle systems of industrially interesting sizes and complex-
ity. It can be shown [24] that when E is blocking, this is due to some conflict
between the components of E . Thus, the approach of [24] employs conflict-
preserving abstractions to iteratively remove redundancy and thus to keep the
abstracted system size manageable. However, this approach eventually ends
up converting the resulting abstracted EFSM system into ordinary finite-state
machines, and then doing a monolithic verification of that. This then requires
an efficient explicit verification algorithm, such as the one presented in [25].

A9

Paper A

3.2 Verification of LSM in Supremica
The software tool Supremica [18] implements the nonblocking verification
algorithms mentioned above (as well as various other algorithms, both for
verification and synthesis). To verify whether LSM presented in Section 2
fulfils Req.1 or not, we transform Req.1 into an EFSM specification in such a
way that with an EFSM model of the LSM code as the plant, the system will
be nonblocking if and only if LSM fulfils Req.1 .
The manual modelling of the LSM as an EFSM, similar to [17], is illustrated

with a small excerpt from the actual MATLAB-code, shown in Listing 7.1 with
some variable and state names anonymized. Listing 7.1 is a piece of the code
that assigns variables and decides whether the system transits to a new state
or not. The EFSM corresponding to the code is shown in Fig. 2. As described
in Section 2, the LSM involves three execution stages during each call. The
event update in the EFSM signifies the first stage: update on the inputs.
The event update is followed by three transitions to model the possibility
for the input variable laneChangeRequest to take one of the three values
equally likely. Modelling the rest of the lines of code is straightforward. Note
that the illustration provided is a minimal example to explain the modelling
approach undertaken to manually model the LSM source code as an EFSM
in Supremica.

Listing 7.1: An illustrative excerpt from LSM code used for verification.
1 f u n c t i o n duringStateA (var , laneChangeRequest)
2
3 var . d i r e c t i o n = laneChangeRequest ;
4 var . x = f a l s e ;
5 var . y = f a l s e ;
6 i f laneChangeRequest != NoRequest
7 var . s t a t e = StateB ;
8 end
9

10 end

Req.1 modelled as an EFSM is shown in Fig. 3. The event enterFinished
denotes that the LSM has reached State_Finished completing the lane change
process. The guard on the event checks for equality between two variables,
Output_Indication and Output_ChangeLane. When these variables differ,
the EFSM transits to a blocking state as shown in Fig. 3. Output_Indication

A10

4 Model Checking

update
e1: Request′ = NoRequest

e2: Request′ = ChangeRight

e3: Request′ = ChangeLeft

e4:
direction′ = Request

x′ = False
y′ = False

check:
[Request 6= NoRequest]

state′ = stateB

check: [Request = NoRequest]

Figure 2: EFSM of Listing 7.1. Primed variables represent next-state values.

and Output_ChangeLane are modelled in a way such that they are set only
during specific modes during the lane change process and are reset only when
the LSM transits back to the initial state, when no lane change is requested.
This makes it possible for their use in expressing Req.1 . Modelling the LSM
code in Supremica resulted in an EFSM with 76 locations, 113 events, 144
transitions, and 20 variables. The synchronisation of the LSM with the EFSM
in Fig. 3 resulted in a model with 1,522,117 reachable states, 113 events,
and 2,164,607 transitions. The nonblocking verification of the synchronised
model took less than a second and showed that a blocking state can indeed
be reached. Supremica also provides a 43 events long counter example that
can be analysed in detail to understand the underlying cause.

×

enterFinished:
[Output_Indication = Output_ChangeLane]

enterFinished:
[Output_Indication 6= Output_ChangeLane]

Figure 3: EFSM of the specification to model Req.1 . The blocking state is repre-
sented with a cross inside.

4 Model Checking
Model checking [26], [27] is a framework for verification of finite transition
systems using temporal logic [28] as a specification formalism. Several for-

A11

Paper A

malisms and powerful model checking tools have emerged over the years [29],
[30].

Definition 2: A finite transition system is a tuple T = 〈S,Act,→, I, AP,L〉
where S is a finite set of states, Act is a finite set of actions, →⊆ S×Act×S
is a transition relation, AP is a finite set of atomic propositions, and L : S →
2AP is a labelling function.
Given a transition system T , and a temporal logic formula f , the model
checking problem is a decision procedure for T � f . If T 2 f , then the
model checking algorithm provides a counter example as an evidence for the
violation, which can then be used to analyse the issue and the ways to resolve
it.

4.1 Temporal Logic of Actions
The Temporal Logic of Actions (TLA) is a logical formalism for specifying
and reasoning about concurrent systems [31]. TLA is a variant of temporal
logic [28] and uses the notion of states and actions to model behavioural
properties of systems. TLA, as a logical formalism provides the expressive
power to reason about programs using assertions on states and pairs of states
(actions). Actions are predicates that relate two consecutive states and are
used to capture how the system is allowed to evolve. This section only presents
a brief overview of TLA and the associated formalism for specifying and model
checking systems. A more detailed description of the language and other
advanced advanced topics is available in [7], [19], [31].
The reasoning system in TLA is built around TLA formulas. A TLA for-

mula is true or false on a behaviour. A behaviour in TLA is an infinite sequence
of states. A state in TLA is an assignment of values to variables and a step is
a pair of states. Steps of a behaviour denote successive pairs of states. Given
a system S, with the executions of the system represented as behaviours, and
a formula f , we can decide whether S satisfies f iff the formula f is true for
every behaviour of S.
The elementary building blocks of a TLA formula include state predicates,

actions, logical operators (such as ∧,¬, etc.), the temporal operator � (al-
ways) and the existential quantifier ∃. A state predicate is a boolean valued
expression (predicate) on states. An action, A, is a boolean valued expression
(predicate) on steps. Actions are formed from unprimed variables and primed
variables to represent the relation between old states and new states. The

A12

4 Model Checking

unprimed variables refer to the values of the variables in old states, the first
state of the step, whereas the primed variables refer to the variable values
in new states, the second state of the step. State predicates have no primed
variables. A step is an A-step if it satisfies A. An action is valid, � A, iff every
step is an A-step. In TLA, atomic operations of programs are represented by
actions.

TLA+ is a formal specification language based on formal set theory, first
order logic and TLA. A TLA+ specification, typically denoted Spec, is a tem-
poral formula predicate on behaviours. All the behaviours satisfying Spec
constitute the correct behaviours of the system. TLA+ describes a system as
a set of behaviours with an initial condition and a next state relation. The
initial condition specifies the possible initial states and the next state relation
specifies the possible steps. A TLA+ specification is a temporal formula of
the form

Spec , Init ∧�[Next]〈vars〉 ∧ Temporal (A.1)

where Init is a state predicate corresponding to the initial condition, Next is an
action corresponding to the next state relation, vars is a tuple of all variables
in the specification, and Temporal is a temporal formula usually specifying
liveness conditions. Formula Spec can be seen as a predicate on behaviours.
Spec is true for a behaviour σ, iff Init is true in the first state of σ and every
step in σ is either a step that satisfies Next or is a stuttering step. A stuttering
step is one in which none of the variables are changed.
The specification (A.1) can be model checked using the TLC model checker.

TLC takes a TLA+ specification and checks whether the specification satisfies
the desired properties by evaluating all possible behaviours of the specification.
The TLA+ specification language accompanied by an IDE consisting of TLC
and other useful tools can be downloaded from [19].

4.2 Verification of LSM in TLA+

The approach we use to formally verify the LSM in TLA+ is similar to the
approach of Supremica. The LSM code is manually translated in TLA+ using
the constructs available in the specification language. Listing 7.2 shows the
TLA+ translation of the MATLAB-code in Listing 7.1 as a TLA+ formula that
relates unprimed variables and primed variables using arithmetic and logical
operators. The formula describes the allowed behaviour of the function in

A13

Paper A

Listing 7.1. A call to the function duringStateA is translated to a behaviour
where the formula During_StateA is valid.

Listing 7.2: TLA+ translation of the code in Listing 7.1.
1 During_StateA ==
2 /\ Lane_Change_Request ' \ in ...

{" NoRequest " , " ChangeLeft " , " ChangeRight "}
3 /\ var_state = " StateA "
4 /\ var_direct ion ' = Lane_Change_Request
5 /\ var_x ' = FALSE
6 /\ var_y ' = FALSE
7 /\ IF Lane_Change_Request # " NoRequest " THEN
8 var_state ' = " StateB "
9 ELSE UNCHANGED var_state

The TLA+ translation of the entire LSM code consists of an initial state
predicate, Init and Next. Next is composed of smaller sub-formulae, each
corresponding to different functions in the original code, of which one formula
is shown in Listing 7.2. With the complete TLA+ translation of the LSM ,
TLC can model check for desired properties, which are described using pre-
defined statements and constructs available. More details on the statements
and the restrictions on TLC is available in [7]. In order to verify Req.1 of
Section 2, we make use of invariant checking in TLC.
An invariant, typically denoted as Inv, of a Spec is a state predicate that

should be valid in all reachable states. Invariants can be defined for specifica-
tions as well as next-state actions. An invariant of a specification that is also
an invariant of a next-state action is sometimes called an inductive invariant
of Spec. In model checking mode for invariance checking, TLC explores all
reachable states and looks for states in which the invariant is not satisfied.
Req.1 is translated to a TLA formula as

InvProp , ¬(var_state = "State_Finished"
∧Output_Indication 6= Output_Change_Lane). (A.2)

Reaching a state where InvProp is violated means that the state predicate
evaluate to false, i.e. a behaviour where the lane change is finished and the
outputs for showing indication and changing lane differ, is allowed in our
specification, thereby showing the presence of an error in our code. The

A14

5 Deductive Verification

complete TLA+ translation was 250 lines with 20 variables. In model checking
mode using breadth-first search, TLC shows the violation of InvProp with a
5 step long error trace for analysis.

5 Deductive Verification
Model checking is well suited to establish (temporal) properties of state traces,
but mostly requires abstractions over the real source code. In contrast to that,
deductive verification [32] techniques are well suited for fully precise reasoning
about the computation on the source code level. Often, first order-logic is
used to characterise conditions on the data in specific states, in pre and post-
conditions of procedures, or invariants. Deductive verification typically uses a
compositional methodology, specifying and verifying one procedure at a time.
Verification tools exist for common programming languages such as C [33],
Java [34], or Ada [22].

5.1 SPARK
Ada [35] is a high level imperative programming language targeting the de-
velopment of large scale safety critical software. Ada is suited to meet the
high integrity software requirements and has been used in several industrial
embedded software development projects [21]. SPARK is a subset of Ada with
additional features to support formal verification [22]. SPARK uses property
specifications in the form of program annotations described inline with the
source code to perform static program analysis and build automated proofs to
show the correctness of the software. In that sense, SPARK uses the correct
by construction philosophy through contract based programming to develop
software.
A SPARK program is made up of one or more program units. Subprograms

and packages are two examples of SPARK program units. A subprogram ex-
ecution is invoked by a call and subprograms express a sequence of actions.
Procedures and functions are the two types of subprograms in SPARK. Pro-
cedure calls are standalone statements, whereas function calls occur in an ex-
pression and return a value. Packages group together entities like data types,
subprograms, etc., and can be considered to be the equivalent of header files in
an object oriented programming language like C++. A program unit consists

A15

Paper A

of two structures, a specification and a body. The specification contains the
variables, types and the subprogram declarations with their annotations. The
body of a program unit contains the details of the implementation.
Properties are in SPARK specified using subprogram contracts (pre and

post-conditions), loop invariants, and data dependencies. The formal verifi-
cation toolset in SPARK can perform program analysis on the source code
at various levels. Flow analysis capabilities ensure the program correctness
with respect to data flow and information flow. Errors arising due to unini-
tialized variables, data dependencies between inputs and outputs of subpro-
grams, well-formedness of programs, etc., are checked by this level of analysis.
A higher level of analysis is to perform automated proofs to check for run time
errors and conformance of the program with the specifications. The program
annotations specified are used to generate verification conditions, which can
then be discharged using the proof tools to show program correctness.

5.2 Verification of LSM in SPARK
SPARK 2014 [21] and its associated tools are used to formally verify the LSM.
With the use of packages and subprograms in SPARK, the code structure of
the original implementation of LSM using classes and methods in MATLAB-
code is preserved. Listing 7.3 shows how the code in Listing 7.1 is built in
SPARK. The implementation is done as a procedure (subprogram). Lines 1-6
represent the specification part of the subprogram and lines 8-19 represent
the body. The specification consists of the subprogram declaration and its
contract in the form of pre and post-conditions. The parameter mode in ...

out permits both read and write operations on the values of the associated
parameter.
SPARK has a set of core annotations as predefined rules that can be checked

without user defined contracts. However, here we are interested in verifying
functional properties like Req.1 and therefore SPARK needs stronger anno-
tations to perform formal analysis. The contract specified in Listing 7.3 is
an illustrative example of type of contracts used to show correctness of LSM
with respect to Req.1 . The preconditions, denoted Pre, are assertions that are
satisfied when the procedure is called and the postconditions, denoted Post,
are the conditions that should be satisfied as a result of the procedure call.
These contracts are used by the analysis tools to generate verification con-
ditions, which are mathematical expressions relating a number of hypotheses

A16

5 Deductive Verification

Listing 7.3: SPARK implementation of the code in Listing 7.1.
1 procedure During_StateA
2 (Var : in out Var_Type ;
3 Lane_Change_Request : in Lane_Change_Direction_Type)
4 with Pre => Var . State = StateA ,
5 Post => ((Var . D i r e c t i o n = Lane_Change_Request) and
6 (Var . State in StateA | StateB)) ;
7 -
8 procedure During_StateA
9 (Var : in out Var_Type ;

10 Lane_Change_Request : in Lane_Change_Direction_Type)
11 i s
12 begin
13 Var . D i r e c t i o n := Lane_Change_Request ;
14 Var .X := False ;
15 Var .Y := False ;
16 i f Lane_Change_Request /= NoRequest then
17 Var . State := StateB ;
18 end i f ;
19 end During_StateA ;

(obtained from preconditons) and conclusions (from postconditions). Provid-
ing a correctness proof of the program then boils down to showing that the
conclusions always follow from the hypotheses. Detailed information on the
the analysis tools is available in [22], [36].
With this general idea, the initial approach to prove correctness of the LSM

was to specify one global contract to capture Req.1 . This global contract was
specified on the complete LSM code implemented as a package in SPARK.
However, results from the analysis showed that one global contract was insuf-
ficient to show correctness of Req.1 . Subsequent annotations were added to
the different subprograms. Req.1 was specified as a postcondition (A.3) of a
subprogram responsible for execution on the completion of a lane change.

Post⇒ (Var.State = Finished) and

(Output_Indication = Output_ChangeLane) (A.3)

Although the proof checks for most of the subprogram contracts were auto-
matically proved by SPARK analysis tools, error messages from proof checks
reported that a few postconditions including (A.3) might fail. The unproved
checks could possibly indicate incorrectness of the code (implementation and
specification) or the need for stronger annotations for the tools in the form of

A17

Paper A

intermediate assertions and better code organisation. In order to conclusively
decide the cause for the failed proof checks, more manual reviews, analysis of
the execution paths corresponding to the failed checks and possibly stronger
contracts were needed. However, the undertaken approach of implementing
the code first and then incrementally annotating the subprograms in order to
satisfy the property turned out to be inefficient. A better work flow in our
case would be the reverse approach, where the property is formally broken
down into suitable subprogram contracts followed by the implementation to
show correctness.

6 Insights and Discussion
This section provides a discussion and the insights gained from this case study.
The discussion is focused on how the verification methods aid in addressing
the challenges mentioned in Section 1, and does not aim to compare the per-
formances or the algorithms of the tools.

Describing the system. Autonomous driving systems are often categorised
as Cyber-Physical Systems (CPS) or reactive systems in literature, depending
on the focus of research. Irrespective of the classification, modelling and
observing the system and its environment is a known challenge. The expressive
power is limited to the choice of formalism. In our case, describing LSM
as extended finite state machines and transition systems (although not too
different) was sufficient to capture—and reason about—correctness due to its
discrete nature. However, correctness of Path Planner, Controller, Sense in
Fig. 1 is just as crucial as LSM and the formalism discussed in this paper
might not be sufficient as they have continuous dynamics and probabilistic
behaviour. Choosing task specific formalisms and tools for different software
development teams complicates the industrial adoption of such techniques. In
this respect, having subtle and necessary extensions to the existing formalisms
so as to capture a wider spectrum of abstractions, while still being decidable,
can be invaluable.
Modelling the observable behaviour of the environment faces the risk of

state-space explosion. Defining the operating boundaries of the environment
with respect to the system is very crucial in successfully addressing the chal-
lenge. For example, in our case of the lane change software module, the traffic

A18

6 Insights and Discussion

state (position, behaviour of other vehicles,...) could serve as a definition of
the environment for the decision making component in Fig. 1. However, us-
ing the same definition for environment to model and reason about LSM or
Path Planner, would neither help tackle the challenge nor be an efficient use
of any of the formal technique discussed in this paper. The use of deductive
verification in SPARK decouples from such problems by applying verification
techniques on the source code. Nevertheless, the challenge then manifests in
the need to write complex functional specifications to have the formal analysis
done, as it turned out in our case.
From our experience, the key to address these challenges is to use formal

approaches with different levels of abstractions to divide and conquer in a
modular way, similar to classical large scale software development. Higher
level abstractions could be used to define logical boundaries between the sys-
tems and their environments and lower level abstractions to reason about the
systems within their boundaries. Compositional verification can then be used
to reason about systems in a modular way. Supremica, TLA+ and SPARK
have features to support such compositional verification of systems. This
work flow could also be used to formally obtain subprogram annotations in
the deductive verification framework to show correctness of source code.

Requirements and Properties. In this paper, the focus is to verify one re-
quirement that affects the safety of the system. In the SCT framework, EFSM
is used as the specification language. A violation of the requirement is mod-
elled as an event leading to a blocking state and nonblocking verification is
performed to check for errors. This is similar to checking whether in all
computations, we eventually reach a state from where a marked state can
be reached. While nonblocking cannot be directly translated in linear-time
temporal logic, the use of invariants is exploited in TLA+ to check for the
desired property. In SPARK, the use of pre/post conditions to look for the
particular unsafe behaviour did not prove to be an efficient work method.
While TLA+ and Supremica provided counter examples that could help in
the analysis of the bug, the counter example generation in SPARK was not
sufficient to draw concrete conclusions in our particular case. This could be
attributed to the fact that for efficient use of automated reasoning in contract
based programming, operational completeness, meaning contracts for normal,
error and exceptional behaviour should be included in the specification. The

A19

Paper A

reverse approach of implementing the source code first and then annotating
with contracts to check for a particular unsafe behaviour proved very inef-
ficient. However, a program crashing is just as unsafe as compared to the
behavioural safety property discussed in this paper. For such software pro-
gram malfunction due to run time errors (such as division by zero, overflow,
etc.), modelling and specifying in Supremica and TLA+ is complicated and
will greatly increase the complexity. SPARK is efficient in this regard.

Type of analysis and the scope of correctness. Formal methods can be
applied to all levels of the software development process. While acknowledging
the individual strengths of each of the methods discussed in this paper, no
method on its own is sufficient to prove correctness for the LSM. Supervisory
control and TLA+ are abstract methods that are best suited for verification at
the system level, software architectural level and software design level of the
ISO 26262 standard. Deductive verification methods give the most benefit at
the software unit (program) verification, the lowest level (source code) of the
V-model. SPARK is developed to suit the needs of high integrity safety critical
applications and therefore provides better evidence for compliance to several
clauses of the standard at the software unit verification level. The abstraction
based approaches discussed in this paper involves manual modelling of the
system and therefore requires additional effort to ensure that the right detail
is captured in the modelling as well as in specifying the properties. The
occurrence of false alarms in such methods is of course an implicit trade-off.

Leveraging formal methods in an industrial setting. The verification ap-
proaches discussed in this paper are all performed after the software was im-
plemented. A software to solve an intended function was written in a pro-
gramming language and then verified for correctness. Although, better use of
the methods described in this paper could be made in the earlier stages of the
development process (correct by construction approach), the situation where
software is verified for correctness in the later stages seems more common in
the industrial setting. In our experience, the challenging task encountered
while working with the abstract methods is the lack of interoperability with
the other tools used in the development. Supremica and TLA+ are stand
alone methods and currently, the only way to use them is for engineers to
have parallel activities, one with the formal tools and the other with the con-

A20

7 Conclusion

ventional development tools. While this might be justified for high integrity
applications, the need for manual effort to synchronise the parallel activities
to obtain a concrete impact is often a drawback. Work on suitable interme-
diary plug-ins to have traceability between the informal requirements man-
agement activity and the formal specification methods would definitely work
in favour of increased adoption in the software specification stages. Counter-
example generation in the abstract methods discussed in this paper is easily
the highest return on investment in an industrial setting. This could further
be enhanced by work on using counter-examples to generate test scenarios in
the preferred testing framework in the development routine. This will also
suit well within the continuous development and continuous integration prin-
ciples of agile development. In this regard, SPARK is well suited for easier
integration. However, the use of SPARK as an after development verification
tool without formal specification in the earlier stages, is still inefficient.

7 Conclusion
In this paper, we have applied formal verification based on Supervisory Con-
trol Theory, Model Checking and Deductive Verification to verify correctness
of a decision making software in an autonomous vehicle. Discussion on how
the verification scenario differs in each of the methods is presented. We also
provide insights on how the different approaches can address the challenges
in industrial development of safe autonomous driving software. The difficulty
in working with all these tools is not in learning them but in capturing the
right level of abstraction for the verification objectives and stating the for-
mal properties. Although this paper deals with the verification of one safety
requirement of a decision making software module, the insights gained are
valuable to address the challenges. Future work includes the investigation
of integrating multiple formal approaches to tackle the challenges mentioned
in this paper also to scale the approaches to different types of systems in an
autonomous vehicle for larger classes of properties with more software require-
ments.

A21

Paper A

References
[1] J. Guiochet, M. Machin, and H. Waeselynck, “Safety-critical advanced

robots: A survey”, Robotics and Autonomous Systems, vol. 94, pp. 43–
52, 2017.

[2] M. Luckcuck, M. Farrell, L. Dennis, C. Dixon, and M. Fisher, “Formal
specification and verification of autonomous robotic systems: A survey”,
arXiv preprint arXiv:1807.00048, 2018.

[3] ISO, “Road vehicles – Functional safety”, Tech. Rep. ISO 26262, 2011.
[4] K. Forsberg and H. Mooz, “The relationship of system engineering to

the project cycle”, in INCOSE International Symposium, Wiley Online
Library, vol. 1, 1991.

[5] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event processes”, SIAM journal on control and optimization,
vol. 25, no. 1, pp. 206–230, 1987.

[6] M. Skoldstam, K. Akesson, and M. Fabian, “Modeling of discrete event
systems using finite automata with variables”, in 2007 46th IEEE Con-
ference on Decision and Control, IEEE, 2007, pp. 3387–3392.

[7] L. Lamport, Specifying systems: the TLA+ language and tools for hard-
ware and software engineers. Addison-Wesley Longman Publishing Co.,
Inc., 2002.

[8] K. R. Apt, F. S. de Boer, and E. Olderog, Verification of Sequential and
Concurrent Programs, ser. Texts in Computer Science. Springer, 2009.

[9] S. A. Seshia, D. Sadigh, and S. S. Sastry, “Formal methods for semi-
autonomous driving”, in 52nd ACM/EDAC/IEEE Design Automation
Conference (DAC), IEEE, 2015.

[10] M. Fisher, L. A. Dennis, and M. P. Webster, “Verifying autonomous
systems.”, Commun. ACM, vol. 56, no. 9, pp. 84–93, 2013.

[11] R. C. Armstrong, R. J. Punnoose, M. H. Wong, and J. R. Mayo, “Survey
of existing tools for formal verification”, SANDIA REPORT SAND2014-
20533, 2014.

[12] B. Beckert and R. Hähnle, “Reasoning and verification: State of the art
and current trends”, IEEE Intelligent Systems, vol. 29, no. 1, pp. 20–29,
2014.

A22

References

[13] R. Kasauli, E. Knauss, B. Kanagwa, A. Nilsson, and G. Calikli, “Safety-
critical systems and agile development: A mapping study”, in 2018 44th
Euromicro Conference on Software Engineering and Advanced Applica-
tions (SEAA), IEEE, 2018.

[14] R. A. Kemmerer, “Integrating formal methods into the development
process”, IEEE software, vol. 7, no. 5, pp. 37–50, 1990.

[15] H. Saiedian and M. G. Hinchey, “Challenges in the successful transfer
of formal methods technology into industrial applications”, Information
and Software Technology, vol. 38, no. 5, pp. 313–322, 1996.

[16] S. Wolff, “Scrum goes formal: Agile methods for safety-critical systems”,
in Proceedings of the First International Workshop on Formal Methods
in Software Engineering: Rigorous and Agile Approaches, IEEE Press,
2012, pp. 23–29.

[17] A. Zita, S. Mohajerani, and M. Fabian, “Application of formal verifica-
tion to the lane change module of an autonomous vehicle”, in 2017 13th
IEEE Conference on Automation Science and Engineering (CASE), IEEE,
2017, pp. 932–937.

[18] R. Malik, K. Akesson, H. Flordal, and M. Fabian, “Supremica-An effi-
cient tool for large-scale discrete event systems”, IFAC-PapersOnLine,
vol. 50, no. 1, pp. 5794–5799, 2017, 20th IFAC World Congress, issn:
2405-8963.

[19] L. Lamport, The TLA+ home page, https://lamport.azurewebsites.
net/tla/tla.html, Accessed: 2019-04-22.

[20] C. Newcombe, “Why amazon chose TLA+”, in International Conference
on Abstract State Machines, Alloy, B, TLA, VDM, and Z, Springer,
2014, pp. 25–39.

[21] Adacore - homepage, https://www.adacore.com/, Accessed: 2019-04-
26.

[22] J. Barnes, SPARK: The Proven Approach to High Integrity Software.
Altran Praxis, 2012.

[23] P. J. Ramadge and W. M. Wonham, “The control of discrete event
systems”, Proceedings of the IEEE, vol. 77, no. 1, pp. 81–98, 1989.

A23

https://lamport.azurewebsites.net/tla/tla.html
https://lamport.azurewebsites.net/tla/tla.html
https://www.adacore.com/

Paper A

[24] S. Mohajerani, R. Malik, and M. Fabian, “A framework for composi-
tional nonblocking verification of extended finite-state machines”, Dis-
crete Event Dynamic Systems, vol. 26, no. 1, pp. 33–84, 2016.

[25] R. Malik, “Programming a fast explicit conflict checker”, in 2016 13th
International Workshop on Discrete Event Systems (WODES), IEEE,
2016, pp. 438–443.

[26] E. M. Clarke and E. A. Emerson, “Design and synthesis of synchroniza-
tion skeletons using branching time temporal logic”, in Workshop on
Logic of Programs, Springer, 1981, pp. 52–71.

[27] J.-P. Queille and J. Sifakis, “Specification and verification of concur-
rent systems in CESAR”, in International Symposium on programming,
Springer, 1982, pp. 337–351.

[28] A. Pnueli, “The temporal logic of programs”, in 18th Annual Symposium
on Foundations of Computer Science (sfcs 1977), IEEE, 1977, pp. 46–
57.

[29] C. Baier and J.-P. Katoen, Principles of model checking. MIT press,
2008.

[30] E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem, Handbook of
model checking. Springer, 2018.

[31] L. Lamport, “The temporal logic of actions”, ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), vol. 16, no. 3, pp. 872–
923, 1994.

[32] C. A. R. Hoare, “An axiomatic basis for computer programming”, Com-
munications of the ACM, vol. 12, no. 10, pp. 576–580, 583, Oct. 1969.

[33] N. Kosmatov, V. Prevosto, and J. Signoles, “A lesson on proof of pro-
grams with Frama-C. Invited tutorial paper”, in Tests and Proofs, M.
Veanes and L. Viganò, Eds., Springer, 2013, isbn: 978-3-642-38916-0.

[34] W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, P. Schmitt, and M. Ul-
brich, Eds., Deductive Software Verification—The KeY Book, ser. LNCS.
Springer, 2016, vol. 10001.

[35] Barnes, John, Programming in Ada 2012. Cambridge University Press,
2014.

[36] Spark 2014 reference manual, https://docs.adacore.com/spark2014-
docs/html/lrm/index.html, Accessed: 2019-04-26.

A24

https://docs.adacore.com/spark2014-docs/html/lrm/index.html
https://docs.adacore.com/spark2014-docs/html/lrm/index.html

PAPERB
Supervisory Control Theory in System Safety Analysis

Yuvaraj Selvaraj, Zhennan Fei, Martin Fabian

Computer Safety, Reliability, and Security. SAFECOMP 2020 Workshops,
Lecture Notes in Computer Science vol. 12235, pp. 9–22, 2020.

©Springer Nature Switzerland AG DOI: 10.1007/978-3-030-55583-2_1

The layout has been revised.

1 Introduction

Abstract

Development of safety critical systems requires a risk man-
agement strategy to identify and analyse hazards, and apply
necessary actions to eliminate or control them as malfunctions
could be catastrophic. Fault Tree Analysis (FTA) is one of
the most widely used methods for safety analysis in indus-
trial use. However, the standard FTA is manual, informal,
and limited to static analysis of systems. In this paper, we
present preliminary results from a model-based approach to
address these limitations using Supervisory Control Theory.
Taking an example from the Fault Tree Handbook, we present
a systematic approach to incrementally obtain formal models
from a fault tree and verify them in the tool Supremica. We
present a method to calculate minimal cut sets using our ap-
proach. These compositional techniques could potentially be
very beneficial in the safety analysis of highly complex safety
critical systems, where several components interact to solve
different tasks.

1 Introduction
Software development in safety critical systems necessitates a risk manage-
ment strategy to identify and analyse risks, and to apply the necessary actions
to eliminate or control them. The objective of safety analyses, performed dur-
ing various development phases, is to ensure that the risk of safety violations
due to the occurrence of different faults is sufficiently low.

Fault Tree Analysis, FTA [1], is one of the most common methods for safety
analysis in various industries. While standard fault trees are simple and in-
formative, they are not free from limitations [2]. Standard FTA is primarily a
manual process based on an informal model, i.e., the process relies on the sys-
tem analysts and domain experts to systematically think about all risks and
their possible causes. The lack of formal semantics makes it difficult to verify
the correctness of the safety analysis, especially for rapidly evolving industries
like the autonomous driving industry where new edge cases are continuously
identified. In complex industrial software controlled systems, safety models

B3

Paper B

must capture many possible interactions between system components, where
different interleavings of failure events can either result in a failure or oper-
ational state. Standard fault trees are not suitable for modelling temporal,
sequential and state dependencies of events. Another notable shortcoming
with standard FTA for large and complex systems is the need for safety anal-
yses to be intuitive and compositional. This is crucial in projects where the
system of interest comprises interacting sub-systems, possibly delivered by
different teams or suppliers.
Though several limitations exist, FTA is one of the widely used safety anal-

ysis methods. Different extensions to standard fault trees [3] have been pro-
posed to address some of the limitations. Research on using formal logic
in FTA [4]–[6] address the limitation of informal and manual FTA process.
Extensions like dynamic fault trees [7], state-event fault trees [8], and tempo-
ral fault trees [9] address inability of standard fault trees to model dynamic
behaviour. The most widely used extension to include temporal sequence
information is dynamic fault trees [3], [7]. Over the years, research on the
development of model-based dependability analysis (MBDA) [10] techniques
have enabled automated dependability analysis. In [10], such emerging MBDA
techniques are classified into two paradigms. The first paradigm, termed fail-
ure logic synthesis and analysis focuses on automatic construction of failure
analyses and the second paradigm, termed behavioural fault simulation fo-
cuses on formal verification based techniques. Despite this research, challenges
remain in addressing the limitations with standard fault trees and safety anal-
ysis [3], [10]. Thus any progress in addressing these limitations is helpful. The
preliminary results presented in this paper is part of an ongoing endeavour to
address the aforementioned limitations by a model-based approach based on
Supervisory Control Theory (SCT) [11].
The formal models used in the SCT framework can describe dynamic be-

haviour, which is often needed to analyse modern and complex safety critical
systems. The compositional abstraction based algorithms used in SCT allow
automated synthesis and verification of safety models for large and complex
systems. These features of the SCT framework makes it possible to define a
complete model-based safety analysis approach with automated analysis. To
ensure sufficient detail of explanation and some degree of familiarity, we do
not present a complex example in this paper; instead we describe our approach
using a rather simple example from the Fault Tree Handbook [1].

B4

2 Fault Tree Analysis

We make three main contributions in this paper. First, we address the
issue of informal description of standard fault tree analysis by presenting a
systematic approach to incrementally obtain formal models from a fault tree.
Second, we present a method to analyse the fault trees using the SCT tool
Supremica [12]. Finally, we present a method to calculate minimal cut sets
using our approach. An advantage of our work is the compositional approach
to modelling and verification that is beneficial in reasoning about large fault
trees for highly complex systems. To the best of our knowledge, SCT has not
previously been used in the context of fault tree analysis.
The paper begins with a brief introduction to FTA and SCT in Section 2

and Section 3, respectively. Section 4 discusses modelling and analysis in
Supremica with an example from the Fault Tree Handbook [1]. The paper is
concluded with a brief discussion on future extensions in Section 5. Our work
is successfully integrated with a model-based systems engineering tool [13],
that is widely used in the automotive industry.

2 Fault Tree Analysis

Fault Tree Analysis (FTA) [1] is a top-down deductive safety analysis tech-
nique, where an undesired safety-critical failure of a system is specified, and
then analysed in the context of its operational environment to find all possible
ways in which the specified failure can occur.
A fault tree is a graphical model of various combinations of faults that

cause the safety critical failure, represented as a top level failure event at
the root of the fault tree. From this root event, the fault tree is constructed
from a predefined set of symbols [1], which results in a set of combinations
of component failures that can cause the top level failure. Note that the
fault tree is not a model of all possible causes for system failure, but given
a particular failure it depicts the possible combinations of basic component
failures that lead to this failure. Since FTA is primarily a manual process, the
exhaustiveness of the analysis is left to the assessment of the analyst.

Although several extensions of fault trees have been proposed [3], in this
paper we limit ourselves to the symbols described in the Fault Tree Hand-
book [1]. Broadly, the nodes in the fault tree can be classified into three types:
events, gates, and transfer symbols [1].

B5

Paper B

2.1 Pressure Tank System
The pressure tank system [1] in Fig. 1 describes a control system to regulate a
pump-motor that pumps fluid into the tank. Initially the system is considered
to be dormant and de-energized: switch S1 open, relays K1 and K2 open, and
the timer relay closed. The tank is assumed to be empty in this state and
therefore the pressure switch S is closed. It is also assumed that it takes 60
seconds to pressurize the tank, and an outlet valve, which is not a pressure
relief valve, is used to drain the tank.
System operation is started by pressing switch S1. This closes and latches

relay K1, and subsequently relay K2 to start the pump. When threshold
pressure is reached, the pressure switch opens, causing K2 to open, and con-
sequently the pump motor to cease operation. The timer allows emergency
shut-down in case the pressure switch fails. Initially, the timer relay is closed
and power is applied to the timer as soon as K1 closes. If the clock in the timer
registers 60 seconds of continuous power, the timer relay opens and latches,
thereby causing a system shut-down. In normal operation, when pressure
switch S opens, the timer resets to 0 seconds. When the tank is empty, the
pressure switch closes, and the cycle can be repeated.
Fig. 2 shows the basic fault tree from [1] (page VIII-13) for the pressure tank

system. Here, the hazard ‘rupture of pressure tank after start of pumping’ is
analysed and is represented by the top level failure event, E1. The basic events
denoted by circles represent the respective component failures and form the
leaves of the tree. The intermediate events, which are fault events that occur
due to one or more antecedent causes are denoted by rectangles. The process
of obtaining the fault tree following a top down analysis is out of scope of this
paper; we assume a FT is given. A complete description of the example and
the fault tree can be found in [1].

3 Supervisory Control Theory
The Supervisory Control Theory (SCT) [11] provides a framework to model,
synthesize and verify control functions for discrete event systems (DES), which
are dynamic systems characterised by the evolution of events causing the sys-
tem to transit from one discrete state to another. Given a model of the
system to control, a plant, and a specification describing the desired con-
trolled behaviour, the SCT provides methods to synthesise a supervisor that

B6

3 Supervisory Control Theory

Figure 1: Pressure Tank System from [1], page VIII-1

dynamically interacts with the plant in a closed-loop, and restricts the event
generation of the plant such that the specification is satisfied. The supervisor
thus ensures a safe control of the plant by restricting the execution of certain
events. However, only events that are controllable can be restricted by the
supervisor, while events that are uncontrollable cannot be restricted. A dual
problem that is of interest here, is to given a model of a (controlled) plant
and a specification, verify whether the specification is fulfilled or not. So, in
this paper we use ideas from SCT to formally verify properties of the plant
model, and do not focus on the synthesis of supervisors.
To model a fault tree as a DES, we use Extended Finite State Machines

(EFSM) [14], which are finite state machines extended with bounded discrete
variables, guards that are logical expressions over variables, and actions that
assign values to variables on transitions.

Definition 1: An Extended Finite State Machine (EFSM) is a tuple E =
〈Σ, V,
L,→, li, Lm〉, where Σ is a finite set of events, V is a finite set of bounded
discrete variables, L is a finite set of locations, →⊆ L × Σ × G × A × L is

B7

Paper B

Figure 2: Fault Tree for Pressure Tank System in Fig. 1 from [1], page VIII-13

B8

3 Supervisory Control Theory

the conditional transition relation, where G and A are the respective sets of
guards and actions, li ∈ L is the initial location, and Lm ⊆ L is the set of
marked locations.
A state in an EFSM is given by its current location together with the current

values of the variables. The expression l0
σ:[g]a−−−→ l1 denotes a transition from

location l0 to l1 labelled by event σ ∈ Σ, with guard g ∈ G, and action a ∈ A.
The transition is enabled when g evaluates to true, and on its occurrence, the
current location of the EFSM changes from l0 to l1, while a updates some of
the values of the variables v ∈ V . EFSMs interact through shared events by
synchronous composition, denoted A1 ‖ A2 for two interacting EFSM models,
A1 and A2. In synchronous composition, shared events occur simultaneously
in all interacting EFSMs, or not at all, while non-shared events occur inde-
pendently. Transitions on shared events with mutually exclusive guards, or
conflicting actions will never occur [14]. In an EFSM, active events are the
events that label some transition, while blocked events do not label any tran-
sition. In the synchronous composition of two EFSMs, the blocked events of
the synchronised EFSM, is the union of the blocked events of the synchronised
EFSMs. That is, transitions in one EFSM labelled by events blocked by the
other EFSM, will be removed.

3.1 Nonblocking verification

Given a set of EFSMs A = {A1, . . . ,An}, the nonblocking property guar-
antees that some marked state can always be reached from any reachable
state in the synchronous composition over all the components Ai. While the
monolithic approach to nonblocking verification is explicit, it is limited by the
combinatorial state-space explosion. The abstraction-based compositional ver-
ification [15] has shown remarkable efficiency to handle systems of industrial
complexity. This approach employs conflict-preserving abstractions to itera-
tively remove redundancy and keeps the abstracted system size manageable.
Supremica [16], a tool for modelling and analysis of DES models, implements
the abstraction-based compositional algorithms (and others) for verification
of EFSMs.

B9

Paper B

4 FTA in Supremica
In this section, we describe how the fault tree in Fig. 2 is modelled into a
number of plant EFSMs. We demonstrate how the model can be validated
by verifying typical specifications in Supremica. This section also includes a
brief discussion about computing minimal cut sets using our approach. Both
Supremica and the models of this section are available online1.

4.1 Modelling
To make the best use of compositionality, we incrementally model different
failure events in a modular way. Given a fault tree, we first model the lowest
level and gradually proceed towards the top level event. For the higher levels,
we only consider the intermediate fault events from the lower levels and hide
all other inner details.
Consider the lowest level of the fault tree in Fig. 2. It consists of two basic

events as inputs to the lowest OR gate leading to the intermediate fault event,
E5. This forms the first level in our modelling hierarchy. Fault event E5 can
occur either due to a primary failure of K1 or a primary failure of R. This
behaviour is modelled in the EFSM as shown in Fig. 3a2. The two events K1
and R denote the corresponding primary failures and when either occurs, the
EFSM transits from its initial location, Ai0 to location E5.
With E5 modelled, we proceed to the next level, the intermediate fault event

E4. From Fig. 2, we see that this can occur either due to a primary failure of
switch S1 or due to the occurrence of E5. This gives us a total of 7 possible
combinations that lead to E4. However, since we have modelled the analysis
for E5 as an EFSM on the previous level, we can use guards to capture this,
and model E4 with just 2 events as shown in Fig. 3b. The guard condition on
the event E5 ensures that the event is enabled only in a situation where the
EFSM in Fig. 3a is in location E5. Here, the guard [A0 == E5] represents
that the current location of the EFSM A0 in Fig. 3a, is E5.
The next level in our modular hierarchy is the output event of the only AND

gate in the fault tree, E3. The two inputs to the AND gate correspond to the
primary failure of the pressure switch S and the analysis resulting from the
intermediate fault E4. Fig. 4 shows the model for this fault event E3. Since

1https://supremica.org
https://github.com/yuvrajselvam/FTA_SCT

B10

4 FTA in Supremica

Ai0A0: E5

K1

R

(a) EFSM modelling E5

Ai1A1: E4

E5 : [A0 == E5]

S1

(b) EFSM modelling E4

Figure 3: EFSMs for intermediate failure events, E4 and E5 of the fault tree

the order of events do not matter in an AND gate, there are two possible ways
to reach the failure state as shown in Fig. 4.

Ai2A2: A1
2

A2
2 E3

E4 : [A1 == E4]

S S

E4 : [A1 == E4]

Figure 4: EFSM, A2 for the intermediate failure event E3

The final two levels of the fault tree corresponding to fault events E2 and
E1 consist of OR gates and are modelled as already shown, see Fig. 5. Note
that in the plant models, the only unmarked location is the initial location
in Fig. 5b, and therefore in the synchronised plant model, which gives the
complete fault tree, the marked locations correspond to the top level failure
event E1.

Ai3A3: E2

E3 : [A2 == E3]

K2

(a) EFSM modelling E2

Ai4A4: E1

E2 : [A3 == E2]

T

(b) EFSM modelling E1

Figure 5: EFSM for intermediate failure events, E2 and E1 of the fault tree

For special cases of AND gates, like INHIBIT and PRIORITY-AND, the
2In this paper, for a fault Ex in the FT, Ex denotes the corresponding event in the EFSM
and Ex denotes the location reached due to the occurrence of the fault.

B11

Paper B

models look slightly different. For an INHIBIT gate, where the output is
determined by a single input together with some qualifying condition, we can
use a single event label together with the qualifying condition as a guard to
model the transition to the failure state. For a PRIORITY-AND gate, where
the output occurs only if all inputs occur in a specified ordered sequence, we
can model the specified sequence as a path from the initial state to the failure
state. For example if failure event E3 is at the output of a PRIORITY-
AND with the order specified as E4 before S, then we only have the path
Ai2 −→ A1

2 −→ E3 in Fig. 4 as the corresponding EFSM. This makes it possible to
use EFSMs to model sequential dependencies as required by the PRIORITY-
AND gate.
The distinction between inclusive and exclusive-OR gates can be ignored in

the fault tree analysis when dealing with independent, low probability compo-
nent failures (see [1], page VII-7). Therefore we do not introduce special ap-
proaches to differentiate them in our method. If a distinction is truly needed,
additional guards and transitions can be introduced on the model.
Algorithm 1 presents a systematic method to construct EFSMs in a modular

way from a given fault tree. Note that the algorithm includes modelling of
two types of gates only, AND and OR. However, it can be extended to include
other types of gates like INHIBIT and PRIORITY-AND as discussed above.
In Algorithm 1, lines 9-18 describe the modelling of OR gates and lines 19-30
describe AND gates. The addition of guards on the transitions mentioned
in lines 16 and 28 describe the use of EFSM variables in guard conditions as
shown in Fig. 3b for the OR gate, and in Fig. 4 for the AND gate, respectively.

4.2 Verification
In software controlled complex systems, safety analysis plays a significant role
in formulating the safety requirements for the subsequent system design. Es-
tablishing confidence in the fault tree analysis is typically done manually. This
is a shortcoming as it is error prone and even intractable for large and com-
plex systems. An automated analysis method is very beneficial in providing
sufficient verification evidence for the safety analysis phase. In this section, we
present how typical specifications are modelled and verified using nonblocking
verification algorithms in Supremica.
When system operation is started in the pressure tank in Fig. 1, the pump

starts filling fluid into the tank. When the tank is full and the threshold pres-

B12

4 FTA in Supremica

Algorithm 1: Modular fault tree modelling
Input: Fault Tree, FT
Output: EFSM set corresponding to the fault tree, FT

1Initialisation
2declare basic events set, BE
3declare variables, Q, curr_node, child
4add root (FT) to Q // queue, Q contains elements to be processed

5BE:= getBasicEvents (FT)
6while Q 6= Ø do
7curr_node:= pop (Q) // get the oldest element in queue

8gate:= getGate (curr_node) // retrieve connecting gate of node

9if gate is OR then
10create initial and terminal locations, l0 and ln
11foreach child ∈ getChildren (gate) do
12if child ∈ BE then // child is a basic event

13addTransition(l0, ln, child)
14else // child is an intermediate event

15addTransition(l0, ln, child)
16add guards using automaton variables on the respective

transitions
17add child to Q

18markLocations(curr_node, root (FT))
19else // node is an AND gate

20create initial and terminal locations, l0 and ln
21children:= getChildren (gate)
22create a set of strings, S, by permutation over children

// each string is a path from l0 to ln

23foreach string ∈ S do
24create transitions and locations correspondingly
25obtain the set of events, E
26foreach event ∈ E do
27if event /∈ BE then // it is intermediate event

28add guards using automaton variables on respective
transitions

29add event to Q

30markLocations(curr_node, root (FT))

31function markLocations(curr_node, root (FT))
32if curr_node == root (FT) then
33mark the terminal location, ln
34else
35mark all locations

36function addTransition(la,lb,event)
37add transition between la and lb
38label transition with event
B13

Paper B

sure is reached, pressure switch S opens, causing K2 to open, and consequently
the pump to stop. K2 failing to open would result in continuous pumping be-
yond the threshold and may result in the rupture of the tank. Therefore K2
is critical for safe operation and a primary failure of K2 may result in the top
level failure event E1. Ideally, this behaviour should be captured in our FTA
and we can verify this. Fig. 6a shows the EFSM modelling this specification.
K2 is the only active event in this EFSM and the other basic events in the
fault tree are blocked. Recall that transitions labelled by blocked events are
removed in the synchronous composition of the specification and the plant
models. Therefore, by blocking all basic events but K2, we ensure that K2 is
included in the marked language of the EFSM whereas other basic events are
not. A nonblocking verification performed on the synchronised model of this
specification together with the plant models, shows that the system is non-
blocking, thereby verifying that a primary failure of K2 is sufficient to cause
rupture of the tank, the failure event E1.

Si0S0:

S1
0

BLOCKED:
T
S
S1
K1
R

K2

(a) EFSM for K2 −→ E1

Si1S1:

S1
1

BLOCKED:
T
S1
K1
K2
R

S

(b) EFSM for S −→ E1

Figure 6: EFSM for specifications

Si2S2: S1
2 S1

2

BLOCKED:
T
K2
K1
S1R

S

S

R

Figure 7: EFSM for specification S ∧R −→ E1

On the other hand, since we have the timer relay as a backup in the system,
only a failure of the pressure switch, S, should not lead to tank rupture. We
can model this as a specification shown in Fig. 6b. Since we are only interested

B14

4 FTA in Supremica

in the primary failure of pressure switch S, we block the remaining basic events
in the fault tree. A nonblocking verification of this specification synchronised
with the plant model results in a blocking state, thereby verifying that only
S occurring will not result in the top level failure event E1. However, if we
also include the failure of the timer relay R, we get the specification as shown
in Fig. 7. With this specification, we can verify that the system is indeed
nonblocking, i.e., a failure of both components S and R will lead to the top
level failure event E1. Specifications to model the remaining causes leading to
the top level event and/or the intermediate events are done in a similar way
as in figures 6 and 7.
The type of specifications that we have seen so far are modelled to check

whether certain basic events or combinations of events lead to a failure event.
Given such a specification, SP, and fault tree, FT, Algorithm 2 presents how
EFSM models can be obtained from them.

Algorithm 2: Modelling specifications
Input: Fault Tree, FT and Specification, SP
Output: EFSM modelling the specification

1Initialisation
2declare basic events set, BE
3declare active events set, AE
4declare blocked events set, BLOCKED
5BE:= getBasicEvents (FT)
6AE:= getBasicEvents (SP)
7create locations l0, l1, ..., lN with N = |AE|
8make l0 the initial location
9make lN the single marked location

10for every pair (li−1, li) with i ∈ {1, 2, ..., N} create N transitions
11label each transition uniquely from σ ∈ AE
12add blocked events, BLOCKED:= BE \ AE

4.3 Minimal Cut Sets
Our approach is not only useful for verification but also in calculating minimal
cut sets, one of the most prominent qualitative analysis techniques of standard
fault trees. A cut set is a set of component failure events that together lead to
the top level failure. Formally, a minimal cut set is a smallest combination of

B15

Paper B

component failures which, if they all occur, lead to the top level failure event.
It is smallest in the sense that all failures are needed for the top level event
to occur and if one of them in a cut set does not occur, then the top event
will not occur by that set. For example, the minimal cut sets for the pressure
tank system are {T}, {K2}, {S, S1}, {S, K1}, {S, R}.
In our modelling approach presented in Section 4.1, the marked locations

in the composed model correspond to the top level failure event. This makes
it possible to use the marked language of the plant EFSM to calculate the
minimal cut sets. In our case, a cut set is a set of events that lead to marked
locations corresponding to the top level failure event. Calculating minimal
cut sets is then done by finding the shortest paths in the synchronised plant
EFSM from the initial location to the marked locations, a task typically solved
by variants of breadth-first search algorithms. Algorithm 3 presents one such
method to calculate minimal cut sets by exploiting the marked language of
the synchronised EFSM. Lines 11-13 of the algorithm adds the basic events
that can reach the marked location in the synchronised EFSM to the output
set. Lines 14 and 15 ensure that the same events are not repeated.

5 Conclusion
We have shown how fault tree analysis can be formalised to be automatically
analysed by modelling techniques from Supervisory Control Theory (SCT)
using the tool Supremica. We present a systematic approach to incremen-
tally obtain formal models from a given standard fault tree, as summarised
in Algorithm 1. Algorithm 2 describes a method to automatically generate
specifications for given properties of the fault tree, so that theycan be verified
using non-blocking verification. Finally, Algorithm 3 presented a method to
automatically calculate minimal cut sets from the generated models.
Though our modelling approach can model complex systems with redun-

dant architectures and dynamic dependencies, we here limit ourselves to the
standard symbols described in the Fault Tree Handbook. Our approach can
indeed be extended to use dynamic gates. The formal model obtained from
the approach discussed in this paper, considers only the fault behaviour of the
system as described by a given fault tree and nothing else. While we verify
certain properties on the model to establish confidence in the system, we do
not focus on correctness of the construction of the fault tree in the context of

B16

5 Conclusion

Algorithm 3: Computation of Minimal Cut Sets
Input: EFSM1, . . . ,EFSMn modelling the considered FT
Output: Set of minimal cut sets, S

1Initialisation
2declare variable Q as queue with states to be processed
3declare synchronised EFSM A as EFSM1 || . . . || EFSMn

4declare basic event set, BE
5declare blocked events set, BLOCKED
6BE := getBasicEvents(A)
7while ∃e ∈ {σ | ∃s′ s.t. (si, σ, s

′) ∈→A ∧ σ ∈ BE} do
8Q.put(si) // Enqueue the initial state si

9while Q 6= ∅ do
10s := Q.get() // Dequeue state s from Q

11if ∃s′,∃σ s.t. (s, σ, s′) ∈→A ∧ isMarked(s′) then
// Retrieve basic events labelling transitions from si to s

12Σc := getEvents(si, s
′) ∩ BE

// Σc is one minimal cut set, insert it into S

13S.put(Σc)
14create a single location (marked) EFSMsp with BLOCKED := Σc

// Update A by blocking all basic events in Σc

15A := A || EFSMsp

16break
17else
18forall s′ s.t. (s, σ, s′) ∈→A do Q.put(s′)

the system’s operational environment. In a behavioural approach, we would
formally model the complete behaviour of the system, i.e., including the nom-
inal operational behaviour and not only the fault behaviour. This presents a
wide range of possibilities. One possible extension is to adopt a formal ap-
proach similar to model checking [5]. Another notable extension of our work is
to use the behavioural system models and the supervisor synthesis framework
provided by SCT to automatically synthesize the fault behaviour. This falls
in line with the model-based dependability analysis [10] approach for safety
analysis. In such extensions, the system model becomes the plant models and
the work in this paper can then be used to obtain formal specifications from a
given fault tree. This approach makes it possible to use such formal models in
several stages of a model-based design process. The state based models that
are created can be re-used during the development of the software programs

B17

Paper B

in the later stages. The work presented in this paper can provide a solid basis
for possible extensions in those areas.
A primary motivation for this work is our current focus on formal ver-

ification of autonomous driving systems where SCT and Supremica have
been used to verify software for autonomous driving systems [17]. We believe
our work in this paper will strongly encourage the application of SCT and
Supremica in different stages of safety critical software development starting
from safety analysis in the early stages to synthesis and verification of the
software in the end stages. Our work in this paper is successfully integrated
with a model-based systems engineering tool [13], that is widely used in the
automotive industry.

References
[1] W. E. Vesely, F. F. Goldberg, N. H. Roberts, and D. F. Haasl, “Fault

tree handbook”, Nuclear Regulatory Commission Washington DC, Tech.
Rep., 1981.

[2] S. Kabir, “An overview of fault tree analysis and its application in model
based dependability analysis”, Expert Systems with Applications, vol. 77,
pp. 114–135, 2017.

[3] E. Ruijters and M. Stoelinga, “Fault tree analysis: A survey of the state-
of-the-art in modeling, analysis and tools”, Computer science review,
vol. 15, pp. 29–62, 2015.

[4] K. M. Hansen, A. P. Ravn, and V. Stavridou, “From safety analysis to
software requirements”, IEEE Transactions on Software Engineering,
vol. 24, no. 7, pp. 573–584, 1998.

[5] A. Thums and G. Schellhorn, “Model checking FTA”, in International
Symposium of Formal Methods Europe, Springer, 2003, pp. 739–757.

[6] J. Xiang, K. Ogata, and K. Futatsugi, “Formal fault tree analysis of
state transition systems”, in Fifth International Conference on Quality
Software (QSIC’05), IEEE, 2005, pp. 124–131.

[7] J. B. Dugan, S. J. Bavuso, and M. A. Boyd, “Dynamic fault-tree models
for fault-tolerant computer systems”, IEEE Transactions on reliability,
vol. 41, no. 3, pp. 363–377, 1992.

B18

References

[8] B. Kaiser, C. Gramlich, and M. Förster, “State/event fault trees—a
safety analysis model for software-controlled systems”, Reliability Engi-
neering & System Safety, vol. 92, no. 11, pp. 1521–1537, 2007.

[9] G. K. Palshikar, “Temporal fault trees”, Information and Software Tech-
nology, vol. 44, no. 3, pp. 137–150, 2002.

[10] S. Sharvia, S. Kabir, M. Walker, and Y. Papadopoulos, “Model-based
dependability analysis: State-of-the-art, challenges, and future outlook”,
in Software Quality Assurance, Elsevier, 2016, pp. 251–278.

[11] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event processes”, SIAM journal on control and optimization,
vol. 25, no. 1, pp. 206–230, 1987.

[12] R. Malik, “Programming a fast explicit conflict checker”, in 2016 13th
International Workshop on Discrete Event Systems (WODES), IEEE,
2016, pp. 438–443.

[13] SYSTEMITE, Systemweaver, https://www.systemweaver.se/, Ac-
cessed: 2020-05-09.

[14] M. Skoldstam, K. Akesson, and M. Fabian, “Modeling of discrete event
systems using finite automata with variables”, in 2007 46th IEEE Con-
ference on Decision and Control, IEEE, 2007, pp. 3387–3392.

[15] S. Mohajerani, R. Malik, and M. Fabian, “A framework for composi-
tional nonblocking verification of extended finite-state machines”, Dis-
crete Event Dynamic Systems, vol. 26, no. 1, pp. 33–84, 2016.

[16] R. Malik, K. Akesson, H. Flordal, and M. Fabian, “Supremica-An effi-
cient tool for large-scale discrete event systems”, IFAC-PapersOnLine,
vol. 50, no. 1, pp. 5794–5799, 2017, 20th IFAC World Congress, issn:
2405-8963.

[17] Y. Selvaraj, W. Ahrendt, and M. Fabian, “Verification of decision mak-
ing software in an autonomous vehicle: An industrial case study”, in
Formal Methods for Industrial Critical Systems, K. G. Larsen and T.
Willemse, Eds., Cham: Springer International Publishing, 2019, pp. 143–
159, isbn: 978-3-030-27008-7.

B19

https://www.systemweaver.se/

PAPERC
Automatically Learning Formal Models: An Industrial Case from

Autonomous Driving Development

Yuvaraj Selvaraj, Ashfaq Farooqui, Ghazaleh Panahandeh, Martin Fabian

ACM/IEEE 23rd International Conference on Model Driven Engineering
Languages and Systems (MODELS ’20 Companion), October 18–23, 2020,

Virtual Event, Canada,
©Association for Computing Machinery DOI: 10.1145/3417990.3421262

The layout has been revised.

1 Introduction

Abstract

The correctness of autonomous driving software is of utmost
importance as incorrect behaviour may have catastrophic con-
sequences. Though formal model-based engineering techniques
can help guarantee correctness, challenges exist in widespread
industrial adoption. One among them is the model construc-
tion problem. Manual construction of formal models is expen-
sive, error-prone, and intractable for large systems. Automat-
ing model construction would be a great enabler for the use of
formal methods to guarantee software correctness and thereby
for safe deployment of autonomous vehicles. Such automated
techniques can be beneficial in software design, re-engineering,
and reverse engineering. In this industrial case study, we ap-
ply active learning techniques to obtain formal models from an
existing autonomous driving software (in development) imple-
mented in MATLAB. We demonstrate the feasibility of active
automata learning algorithms for automotive industrial use.
Furthermore, we discuss the practical challenges in applying
automata learning and possible directions for integrating au-
tomata learning into automotive software development work-
flow.

1 Introduction
In recent years, the global automotive industry has made significant progress
towards the development of autonomous vehicles. Such vehicles potentially
have several benefits including the reduction of traffic accidents and increased
traffic safety [1]. However, these are highly complex and safety critical sys-
tems, for which correct behaviour is paramount, as incorrect behaviour can
have catastrophic consequences. Ensuring safety of autonomous vehicles is
a multi-disciplinary challenge, where software design and development pro-
cesses play a crucial role. A strong emphasis is placed on updating current
engineering practices to create an end-to-end design, verification, and valida-
tion process that integrates all safety concerns into a unified approach [2].

Automotive software engineering is faced with several challenges that in-

C3

Paper C

clude non-technical aspects (such as organization, strategic processes, etc.)
and technical aspects (such as the need for new methodologies that com-
bine traditional control theory and discrete event systems, quality assurance
for reliability, etc.) [3], [4]. Model-based engineering techniques can address
some of the challenges and help tackle the complexity in developing depend-
able automotive software [5]–[7]. An autonomous vehicle consists of several
software and hardware components that interact to solve different tasks. Soft-
ware in a modern car typically consists of hundreds of thousands of lines of
code deployed over several distributed units developed by different suppliers
and OEMs. The model-based approach to design, test, and integrate soft-
ware systems using sufficiently detailed black-box and white-box models is
instrumental in achieving the necessary correctness guarantees for such com-
plex systems. In this vein, several tools and methods have been developed
over the years and model-based design with MATLAB/Simulink has become
increasingly successful in a number of automotive companies [8].
A direct consequence of such increasing software complexity is the possible

presence of potentially dangerous edge cases, bugs due to subtle interactions,
errors in software design and/or implementation. Although the automotive
industry is constantly evolving, testing (including model-based testing) is cur-
rently a prominent technique for software quality assurance [9]. However, an
approach only based on testing is insufficient and partly infeasible to guar-
antee the correctness of autonomous vehicles [10]. Thus, there is a need for
strict measures for quality assurance and the use of formal methods in this
regard promise to be beneficial [11], [12].
Formal verification techniques can indeed be used to identify design errors

in Simulink models using Simulink Design Verifier (SDV) and also to perform
static code analysis on generated C code using Polyspace [13]. However, there
are limitations in SDV; for instance in scalability and in the verification of
temporal properties that cannot be expressed as assertions [14], [15]. SDV
also requires the models to be built in Simulink. This presents a challenge
in reasoning about MATLAB code without Simulink function blocks. Also,
SDV and Polyspace cannot be used to reason about black-box models which
might be necessary to guarantee the correctness of the complete system under
design. Thus, in such cases there is a need to use complementary methods.
In [16], different formal verification methods were used to verify an exist-

ing decision making software (developed using MATLAB) in an autonomous

C4

1 Introduction

driving vehicle. Formal models of the code were manually constructed to
perform formal verification and several insights were presented. Admittedly,
formal methods can be relatively more beneficial if introduced during the
early stages of the software development workflow rather than being used for
post-hoc verification after development. However, there are several obstacles
that impede the widespread adoption of formal methods [11], [17]. Signifi-
cant trade-offs (e.g. tools compatible with formal methods, development cost
and time, etc.) have to be made that disrupts current industrial best prac-
tice. Therefore, any work towards industrial adoption of formal methods in
the automotive domain without significant disruptions on current practice is
definitely rewarding.
Formal verification techniques like model checking [18]—to prove the ab-

sence of errors in software designs—or, formal synthesis techniques like su-
pervisor synthesis [19]—to generate a controller/supervisor that is correct by
construction—require a model that describes the behaviour of the system.
However, constructing a formal model that captures the behaviour of the
software under design is a challenging task and is one of several impediments
in the industrial adoption of formal methods. Manual construction of models
is expensive, prone to human errors, and even intractable for large systems.
Constructing such a model manually is also time consuming, which further
complicates things as the implementation typically changes frequently, espe-
cially so for rapidly evolving systems like autonomous driving.

Automating model construction could help to speed up industrial adop-
tion of formal methods by reducing the burden of manually constructing the
models. Such automated methods will significantly help find potential er-
rors as they can automatically generate and verify production code at regular
intervals. This will further strengthen the suitability of formal methods for
industrial deployment [17], [20]. Automatically constructing formal models
can also help understand and reason about ill-documented legacy systems
and black-box systems which is crucial for the quality assurance in large-scale
and complex automotive systems.
Active automata learning [21]–[28] is an active field of research that ad-

dresses the problem of automatic model construction. These approaches con-
stitute a class of machine learning algorithms that aim to deduce a finite-state
automaton describing the behaviour of a system by actively interacting with
the target system. In this paper, we apply active automata learning to ob-

C5

Paper C

tain formal models from existing autonomous driving software under devel-
opment in MATLAB/Simulink. To this end, we adapt a state exploration
based algorithm [26] and a minimal language learning algorithm [21], to au-
tomatically construct behavioural models of the software. We present results
from the learning outcomes and discuss practical challenges in the process.
Note that this case study does not aim to compare the performance of the
two algorithms, but to show the applicability of active automata learning in
a MATLAB/Simulink development environment.
Model validation was done in several ways, though not formally, that strengthen

the confidence in the usefulness of the automatic model construction. Simu-
lating with the same input parameters both the actual MATLAB code, and
the learnt model resulted in similar outputs, even to the extent that a known
bug existing in the actual MATLAB code was also present in the learnt model.
Visually comparing the learnt model to a manually constructed model of the
same development code [16] showed obvious similarities. Furthermore, lan-
guage minimisation of the learnt model resulted in a model that matches the
abstract model created manually during the early stages of the software design
(Figure 2).
The paper is structured as follows. Section 1.1 presents a brief overview of

related work and Section 2 presents the necessary preliminaries. In Section 3,
we briefly describe the system under learning (SUL) followed by a descrip-
tion of the learning framework and the validation of the formal model learned
in Section 4. Section 5 presents our insights from this case study, where we
discuss practical challenges and possible directions for integrating automata
learning into automotive software development workflow. The paper is con-
cluded in Section 6.

1.1 Related Work
Automatically extracting finite-state models for formal verification has been
done previously, for instance, from Java source code in [29], and from C code
in [30], [31]. These methods rely on extracting an automaton by parsing the
program source code. Hence, they are language specific and strictly rely on
well defined coding patterns and program annotations. Also, it is not possible
to extract models where the source code is not available, such as black-box
systems. Active automata learning mitigates these restrictions and learns
models of black-box systems through interaction.

C6

2 Preliminaries

There exist work on integrating MATLAB/Simulink development environ-
ment with tools compatible for formal verification. For example, in [32], MAT-
LAB/Simulink models are translated to an intermediate language that can
later enable the use of SMT solvers for verification. Other works include de-
veloping MATLAB toolboxes to integrate with a theorem prover [33] and a
hybrid model checker [34]. Such methods depend on considerable manual (and
skilled) work to understand the semantics of the MATLAB/Simulink models
and to develop the respective toolboxes. In contrast, the work presented in
this paper removes such dependencies and learns the formal model by actively
interacting with the MATLAB code.

Active automata learning has been successfully applied to learn and verify
communication protocols using Mealy machines [22], [35], and to obtain for-
mal models of biometric passports [36] and bank cards [37]. In [38], automata
learning is used to learn embedded software programs of printers. Though
such research indicates the use of active automata learning for real-life sys-
tems, challenges exist to broaden its impact for practical use [25], [39], [40].
There are very limited examples on the use of active automata learning in
an automotive context [41], [42] and it is yet to find its place in automo-
tive software development. To the best of our knowledge, active automata
learning has not been used previously to learn behavioural models from auto-
motive software implemented in MATLAB/Simulink, a common model-based
development tool within the automotive industry.

2 Preliminaries
An alphabet, denoted by Σ, is a finite, nonempty set of events. A string is a
finite sequence of events chosen from the alphabet. The empty string, denoted
by ε is the string with zero events. For two strings, s and t their concatenation
is denoted by st, i.e., the string formed such that s is followed by t. The set
of all strings of certain length, k from an alphabet, Σ is denoted as Σk. Thus,
Σ2 is defined as ΣΣ and similarly, Σ(n+1) = ΣnΣ. The set of all strings of
finite length over an alphabet Σ, including Σ0 = {ε}, is denoted by Σ∗.
A language L ⊆ Σ∗ is a set of strings over Σ. A string s is a prefix of a

string u, if there exists a string t such that u = st. For a string s ∈ L ⊆ Σ∗,
its prefix-closure s is the set of all prefixes of s, including s itself and ε. L
is said to be prefix-closed if the prefix-closures of all its strings are also in L,

C7

Paper C

that is L = L. Suffix-closure can be defined analogously.
Definition 1 (State): Let V = {v1, v2, ..., vn} be a set of state variables,

where each variable vi has a discrete finite domain defined as vDi . A state
q is then defined as the assignment of values to variables, V̂ ∈ V D where
V D = vD1 × vD2 × · · · × vDn . We call V̂ a valuation.

Definition 2 (DFA): A deterministic finite automaton is defined as a 5-
tuple 〈Q,Σ, δ, q0,M〉, where:

• Q is the finite set of states;

• Σ is the alphabet containing the events;

• δ : Q × Σ → Q is the partial transition function that takes a state and
an event as arguments and returns a state;

• q0 ∈ Q is the initial state;

• M ⊆ Q is the set of marked states.

The set of all deterministic finite automata is denoted A. Given A ∈ A, we
have the notion of language generated and language marked by the automa-
ton [43]. The language generated by the automaton, L(A) is the set of all
strings defined from its initial state, q0. The marked language, Lm(A) ⊆ L(A)
is the set of all strings that reach marked states. While the generated language
denotes behaviour that is possible but not necessarily accepted, the marked
language denotes behaviour that is accepted. A language is said to be regular
if it is marked by some DFA. It is well-known [43] that for a given regular
language, there exists a minimal automaton, in the sense of least number of
states and transitions, that accepts that language.

2.1 The L∗ Algorithm
The L∗ algorithm [21] is a prominent algorithm in the field of active automata
learning, that has inspired a tremendous amount of work yielding positive re-
sults. It learns a minimal automaton M̂ accepting a marked regular language
Lm(M̂) ⊆ Σ∗, that represents the behaviour of the SUL, over a finite alphabet
Σ. The L∗ algorithm assumes access to an oracle that has complete knowledge
of the system, and the algorithm works by posing queries that are answered
by the oracle. However, to practically use L∗, a mechanism to implement the

C8

2 Preliminaries

different queries needs to be put in place. In this paper, we use a modified
version of the L∗ described in [44], [45]. The learning algorithm interacts with
the SUL using two types of queries:
Membership Queries: Given a string s ∈ Σ∗, a membership query for s

returns 2 if the string can be executed by the SUL and takes the system (from
the initial state) to a marked state. If the string can be executed but does
not reach a marked state, 1 is returned. Else, 0 is returned. The membership
query has the signature: T : A × Σ∗ → { 0, 1, 2 }, and for A ∈ A and s ∈ Σ∗
we have:

T (A, s) =

2, s ∈ Lm(A)
1, s ∈ L(A)− Lm(A)
0, otherwise.

(C.1)

Equivalence Queries: Given a hypothesis automaton H, an algorithm verifies
if H accurately represents the language Lm(M̂). If not, a counterexample c ∈
Σ∗ must be provided, such that, c is incorrectly accepted or incorrectly rejected
by H.
In [21], a probabilistic method to generate counterexamples is proposed by

performing a random walk on the hypothesis. Other methods to generate
counterexamples could include complete exploration of the hypothesis state-
space, or by borrowing ideas from the testing community, such as the W-
method [46], or the Wp-method [47]. In this paper, we use the W-method.

Let M̂ have n states. Given a hypothesis H, with m states, the W-method
creates test strings to iteratively extend the hypothesis containing m states
until it has n ≥ m states. To do so, the W-method uses two sets, P and W ,
where P contains strings that reach some state inH, at least one for each state
in H. The set W contains strings such that every pair of states reached by
strings in P can be distinguished based on where they reach when continued
with some strings in W .
The W-method generates test strings according to PUW where U = (Σ0 ∪

Σ∪Σ2 ∪Σn−m). The generated test strings are executed in the hypothesis
as well as the actual system to find any inconsistencies. To test a string s in
the actual system, it suffices to perform a membership query on the string,
while testing the string in the hypothesis is done as T (H, s). If a mismatch
between the two is found, that string s is a counterexample, the testing is
terminated, and the counterexample is sent to the learner. This is repeated
until n = m or all the generated test strings have been tested.

C9

Paper C

At any given time, the learner updates its knowledge about the target lan-
guage. Internally, this knowledge is represented as an observation table. The
observation table is a two dimensional table with the rows indexed by prefix-
closed strings, and the columns indexed by suffix-closed strings. The cells
contain the value according to the membership query for the concatenated
string in the corresponding row and column.
The learner, by using membership queries, populates the observation table

such that the table is closed and consistent as defined in [44], [45]. Then,
the learner performs an equivalence query on the hypothesis automaton con-
structed from a closed and consistent observation table. If a counterexample
is found, it and all its prefixes are added to the observation table. This process
repeats until no counterexample can be found.

2.2 The Modular Plant Learner
The Modular Plant Learner (MPL) algorithm [26] is a state based active
learning algorithm specifically developed to learn a modular model, that is,
one composed of a set of interacting automata, modules that together define
the behaviour of the system. It does this by actively exploring the state space
of a program in a breadth-first search manner provided with knowledge about
the modules. These modules are defined using three pieces of information:
a name for each module (m), the subset of events (Σm) that belong to the
module, and the subset of state variables that either affect or are affected by
events in the module. In most cyber-physical systems today, it is possible to
observe the state variables. The MPL leverages on this possibility to observe
the internal state variables of the SUL to learn a modular model in a smart
way.
The MPL requires an interface by which it can affect and observe the SUL,

the set of events, and the initial state of the system. The algorithm interacts
with the system that is to be modelled, and actively queries it to learn what
states are reachable from the initial state. Furthermore, some prior knowledge
of the structure of the system is used to split the learning into several modules.
The algorithm consists of two components, the Explorer and the Module-

Builder . When launched, the algorithm, starts the Explorer and one instance
of the ModuleBuilder for each module defined. The Explorer is responsible for
exploring the new states, and the ModuleBuilder keeps track of the module
as it is learned.

C10

3 System Under Learning

The Explorer maintains a queue of states that need to be explored, termi-
nating the algorithm when the queue is empty. The learning is initiated by
adding an initial state to the queue, which becomes the starting state of the
search. For each element in the queue, the Explorer checks if an event from
the alphabet Σ can be executed. This is achieved using the interface to the
system. If a transition is possible, the Explorer broadcasts the current state
(q), the event (σ) and the state reached (q′) to all the ModuleBuilders.

The ModuleBuilder tracks the learning of each module as an automaton.
This is done by maintaining a set Qm containing the states of the module,
and a transition function Tm : Qm × Σm → Qm, for each module. The
ModuleBuilder , on receiving the broadcast, evaluates if the received transition
is of interest to the particular module. If it is of interest, the transition is
refined according to the prior knowledge of the modules, and added to the
module; else it is discarded. When the valuation of state variables in the
source state is equal to that in the reached state, the transition becomes a
self-loop.
Once the transition is processed, the ModuleBuilder waits for further broad-

casts from the Explorer . The algorithm terminates when all modules are wait-
ing for broadcasts, and the exploration queue is empty. Each ModuleBuilder
can now construct and return an automaton based on Qm and Tm.

3 System Under Learning
In this case study, we focus on learning the behavioural model of the Lateral
State Manager (LSM), a sub-component of the decision making and planning
module in an autonomous driving system. The software for this module is ob-
tained from Zenuity, one of the leading companies in the development of safe
and reliable software for autonomous driving software and advanced driver
assistance systems. The system under learning (SUL), the LSM , is responsi-
ble for managing modes during an autonomous lane change. The lane change
software module is implemented in object-oriented MATLAB-code [48] using
several classes with different responsibilities. Simulations during the develop-
ment of LSM code are made using the MATLAB/Simulink environment. A
simplified overview of the system and the interaction of LSM with a high level
strategic planner (Planner) and a low level planner (Path Planner) is shown
in Figure 1. The lane change module is cyclically updated at a high frequency

C11

Paper C

with the current vehicle state, surrounding traffic state, and other reference
signals.

SENSE PATH
PLANNER CONTROLLER

HIGH LEVEL
STRATEGIC
PLANNER
(Planner)

LATERAL
STATE

MANAGER
(LSM)

DECISION MAKING AND PLANNING

Vehicle
State

Traffic
State

Lane Change
Request

Direction

Turn Indication

Control
Signals

Vehicle
State

Traffic
State

Figure 1: The lane change module system overview and interactions between the
three components: Planner, LSM, and Path Planner.

The Planner in the lane change module is responsible for strategic decisions.
Depending on the state of the vehicle, Planner sends lane change requests to
LSM, indicating the desired lane to drive in. This request is sent in the form of
a laneChangeRequest signal, which takes one of the three values: noRequest,
changeLeft, or changeRight at any point in time. On receiving a request,
LSM keeps track of the lane change process by managing the different modes
possible during the process, and issues commands to the Path Planner. If a
lane change is requested, the Path Planner plans a path and sends required
control signals to the low level controller to perform a safe and efficient lane
change. Due to the nature of the task to solve, the LSM implements a finite
state machine. A meta-level abstraction of the LSM , which consists of seven
states, is shown in Figure 2. For confidentiality reasons, the state and event
names are not detailed. An example of a state in the LSM state machine is
State_Finished that represents the completion of the lane change process.
The implementation of LSM is done with a set of methods and variables,

one of which is the current state variable. A call to LSM is issued at every
update cycle. During each call, the LSM undergoes three distinct execution
stages, where the respective set of methods are executed. In the first stage, all
the inputs are updated according to the function call arguments. In this stage,
an associated function called updateState is executed which is responsible for

C12

4 Learning setup

SA

SB SC

SD SE

SG

SF

Figure 2: A meta-level finite-state abstraction of the LSM . The state names and
events are not detailed due to confidentiality reasons.

passing the control flow to the next stage. Second, depending on the current
state, code is executed to decide whether the system transits to a new state
or not. This code also assigns outputs and internal variables. Finally, if a
transition is performed, the last stage executes code corresponding to the new
state entered and assigns new values to the variables.

4 Learning setup
To actively learn a DFA model of the SUL, which in our case is the LSM ,
an interface is necessary through which it is possible to execute (strings of)
events. These event strings represent the executable actions on the SUL. The
execution of these actions results in changing the program state of the LSM .
If an event is requested that is not executable by the SUL in the current
state, the SUL should reply with an error message. Also, it should be possible
to observe and set the state of the SUL. Figure 3 presents an overview of
the active automata learning setup used in this case study. This consists of
three components: the system under learning, the learner, and the interface
between the SUL and the learner. In addition to these, Figure 3 also includes
the formal model analyser, that is used to validate the learnt models. The
learner consists of Scala [49] implementations of the two learning algorithms

C13

Paper C

described in Section 2. The learning setup allows learning of automata models
by (actively) interacting with the SUL. The following subsections describe
the components in brief detail, the learning outcome and the steps taken to
validate the learnt model of the LSM .

LATERAL	STATE
MANAGER

(LSM)

LEARNING
ALGORITHMS

MATLAB-JAVA
INTERFACE

SYSTEM	UNDER
LEARNING

LEARNER

SCALAMATLAB

FINITE-STATE	MODEL
SIMULATOR

FORMAL	VERIFICATION

FORMAL	SYNTHESIS

LEARNING	SETUP

FORMAL	MODEL
	ANALYSER

Figure 3: Overview of the learning setup.

4.1 Abstracting the Code
As described in Section 3, the LSM is a part of the lane change module,
which is updated cyclically at a high frequency with the necessary signals. A
call to the LSM is issued at every execution cycle. Recall that the LSM is
implemented using a set of methods and during each call the LSM undergoes
three execution stages, where the respective set of methods are executed.
In order to decide whether the system transits to a new state or not, the
LSM is dependent on external function calls. These interactions with external
modules need to be abstracted away to learn a model of the LSM . Thus, the
first step in the learning process is to abstract the MATLAB code such that
all external dependencies are removed. The abstraction process is described
using a small example as follows.

Example 4.1

Consider the small code snippet shown in Listing 9.1. It consists of a function
duringStateA that takes input arguments and depending on the variables
var1 and var2 decides whether the system transits to a new state or not.
The values of these two variables are dependent on external function calls,
function1 and function2, respectively.

C14

4 Learning setup

Listing 9.1: A small illustrative example
1 function duringStateA(self,
2 laneChangeRequest)
3 var1 = function1();
4 var2 = function2(laneChangeRequest);
5 if var1 && var2
6 self.state = stateB;
7 end
8 end

These external function calls can be abstracted away by replacing each of
the external calls with additional parameter variables that are passed as input
arguments to duringStateA. This is shown in Listing 9.2 using the added
input argument decisionVar. The two variables, decisionVar.var1 and
decisionVar.var2, have the domain {True,False}. While this abstraction
increases the number of input parameters to the function, the decision logic
remains unchanged.

Listing 9.2: Abstracted version of Listing 9.1
1 function duringStateA(self,
2 laneChangeRequest,
3 decisionVar)
4 if decisionVar.var1 && decisionVar.var2
5 self.state = stateB;
6 end
7 end

Similarly, all such external function calls are abstracted and the final ab-
stracted function contains one additional parameter, decisionVar as an in-
put argument to the updateState function. The output of the updateState
function is a set of internal variables which includes the current state and the
direction for the lane change among others. This set of variables are used
by the learner to observe the behaviour of the LSM during their interaction,
which is described in detail in the following section.

C15

Paper C

4.2 Interaction With the SUL
In active learning, the learner actively interacts with the SUL and reasons on
the observed behaviour to construct a model of the SUL. Hence, this inter-
action is crucial between the learning algorithms implemented in Scala and
the LSM implemented in MATLAB. In order to facilitate this interaction, we
need to:

1. create an interface between the learner and the SUL,

2. provide information to the learner on how to execute the LSM and
observe the output.

The learner must be able to call MATLAB functions, evaluate MATLAB
statements, pass data to, and get data from MATLAB. Scala source code
is compiled to Java bytecode and the resulting executable code is run on a
Java virtual machine (JVM). Therefore, the interface essentially integrates
Java with the MATLAB environment using the MATLAB Engine API for
Java [50].
With this interface established, the learner can now call the updateState

function by providing an input assignment to the state variables and the
input variables laneChangeRequest and decisionVar. However, to learn a
DFA model from a given SUL, the learner additionally requires, among other
things, predicates over state valuations that define the marked states, the
set of events, and event predicates that define when an event is enabled or
disabled.
Since the interaction between the learner and the LSM is done by the

updateState function, the input parameters are used to define the alphabet
– the set of events that are executable by the LSM– of the model. Each
unique valuation of these input parameters corresponds to an event in the
alphabet. Since the abstracted LSM module is provided to the learning
program, each function that is abstracted into a decision variable, poten-
tially, results in one additional input parameter. Following the abstraction
described in Section 4.1, ten external function calls in the LSM were ab-
stracted to have ten Boolean valued decisionVar, in addition to one three
valued laneChangeRequest, as input parameters. This results in a total of
3072 events. However, as unique mode changes in the LSM is defined only
for a subset of these events, some of them would potentially not have any

C16

4 Learning setup

effect on the model behaviour, and therefore their event predicates would be
unsatisfiable.
The event predicates are defined over the state variables. The granular-

ity of these predicates contribute to the performance of the learning algo-
rithm. A very detailed predicate will potentially reduce the total number of
strings to test in the SUL. A general rule of thumb for constructing these
is to create one predicate for each abstracted variable. Taking the example
from the previous section, all events corresponding to decisionVar.var1 and
decisionVar.var2 are enabled when the predicate, self.state == stateA
evaluates to True. For an event to be enabled in a given state, all individ-
ual predicates corresponding to the different variables must evaluate to True.
Events with unsatisfiable predicates can be discarded. Doing so for the LSM
results in a total of 1536 events.
Finally, to observe the behaviour of the LSM , the learner requires a set of

variables. This is given by the output of the updateState function, which
is the valuation of the internal variables, one of which is the current state
variable that can at any point take the value of one of the seven states shown
in Figure 2. Furthermore, the initial state (initial valuation of the variables)
of the LSM is known and is provided to the learner.

4.3 Learning Outcome
Given an interface to the SUL and its alphabet, the learning algorithms de-
scribed in Section 2 are applied to learn a model of the SUL. The algorithms
were run on an Intel i7 machine, with 8GB ram, running Linux. This section
discusses the outcome of the learning. Note that our aim was not to bench-
mark L∗ and MPL against each other, but to show the applicability of active
automata learning in an engineering tool chain based on MATLAB/Simulink.

Learning with L∗

The implemented L∗ algorithm was unable to learn a complete model without
running out of memory in our experiments. After 7 hours of learning, it was
observed that 5 iterations of the hypothesis involved 500k membership queries
and resulted in a hypothesis model with 8 states and 138 transitions. No
insights could be drawn from the obtained partial model.
Two main obstacles were faced while learning using the L∗. Firstly, the

C17

Paper C

growth of the observation table. As the size of the table grows, it takes longer
to check and ensure that the table is closed and consistent. Furthermore,
the memory used to store the table grows rapidly by a factor dependent on
the size of the alphabet. Secondly, exhaustive search for a counterexample
using the W-method in the given setup is time consuming. Due to the large
alphabet size the test strings result in long sequences which in-turn slow down
the equivalence queries since these are implemented as multiple membership
queries.

Learning with MPL

Apart from the interface with the SUL the MPL requires information about
the modules to learn from the SUL. The LSM is a monolithic system and can-
not, in its current form, be divided into modules. Hence, the MPL, though
specifically developed to learn a modular system consisting of several inter-
acting automata, learns a monolithic model of the SUL.
The resulting automaton consists of 37 states and 687 transitions. The

learning took a total of 68 seconds. Furthermore, applying language min-
imisation [43] to the learnt model results in a model with 6 states and 114
transitions. The language minimised automation is shown in Figure 4, and its
similarity to Figure 2 is obvious. The two states SG and SF of Figure 2 are
bisimilar [43], so they both correspond to the single state q6 of Figure 4.
The self-loops in the states of Figure 4 correspond to those events that

are enabled in that particular state but do not change the internal state
of the LSM . For example, consider the code snippet in Listing 9.2. When
decisionVar.var1 is True and decisionVar.var2 is False, the correspond-
ing event is enabled in stateA, but when fired does not cause a change in
the value of self.state, and thereby results in a self-loop. Similarly, all such
enabled events that do not change the internal state become self-loops in the
learnt model. The state q6 does not have a self-loop as it is a transient state
in the LSM . That is, irrespective of input parameters, when q6 is reached,
LSM transits to state q0 for every enabled event.

4.4 Model Validation
As described in Section 4.3, a formal model of the LSM is learnt using the
MPL algorithm. In order to validate the learnt model, similar to [36], we com-

C18

4 Learning setup

q4

q2

q5q0

q6

q3

leftb9
leftb8b9
leftb8b5b9
leftb8b5
leftb8
leftb5b9
leftb5
leftb4b9
leftb4b8b9
leftb4b8
leftb4
left
b9right
b8right
b8b9right
b8b5right
b8b5b9right
b5right
b5b9right
b4right
b4b9right
b4b8right
b4b8b9right

b9none

leftb6

none

leftb5b6

b8none
b8b9none
b8b5none
b8b5b9none
b5none
b5b9none

b10b12right

b4b9none
b4b8none
b4b8b9none
b4b8b5none
b4b8b5b9none
b4b5none

b10none

b10b11right

leftb4

b10leftb12

left

b12none

none
leftb4
left
b7right
b7none
b7left
b4right
b4none

b11b12right

right

leftb11b12
leftb12

b12right

b10left

b6right
b5b6right

none
leftb11

right
leftb5

left

b10b11none

b10b12none

b11none

b4right
b4b6right

b4none

leftb4b6

b10b11b12none

b10leftb11

b11right

b5right

b4b5b9right

b4b8b5right
leftb4b5

b11b12none

b10leftb11b12

b4b5b9none

b10b11b12right

right

b4b5right

leftb4b8b5

b10right

right

leftb4b5b9

Figure 4: Learned model of the LSM . The state names and events are not detailed
due to confidentiality reasons.

pared the learnt model to a model manually constructed from the MATLAB
code. This was done using the tool Supremica [51], which is an integrated
development environment for the creation and analysis of finite-state models.
Supremica includes an automata simulator. It is possible to view the current
state, choose which event to execute, observe the resulting state changes, and
step forwards and backwards through the simulation. This makes it possible
to compare the simulations of the learnt formal model and the simulation of
the actual LSM code using MATLAB/Simulink.

Recall from Section 4.2 that the alphabet of the learnt DFA model is con-
structed using the input parameters of the LSM code. Therefore, execut-
ing the LSM code with a set of input parameters can analogously be simu-
lated by executing the corresponding string of events in the DFA model. For
instance, the result of executing the LSM code with the input parameter,
laneChangeRequest set to changeLeft can be simulated in the DFA model
by executing the event changeLeft. Since this comparison is made between
the results from simulating the actual LSM implementation and the automata
simulation of the learnt model, it would also validate the abstraction choices
described in Section 4.1. Furthermore, a known existing bug in the LSM de-
velopment code could be found to exist also in the learnt model. This was
validated by manually simulating the learnt model with the sequence of in-

C19

Paper C

put parameter changes that produced the bug during the development testing
phase of the actual LSM code.
Though we did not find any discrepancy between the code and the learnt

model, such manual inspection is not exhaustive and therefore cannot guar-
antee completeness of the validation process. An alternative approach in this
regard would be to use formal verification to verify the correctness. However,
as only limited informal specifications (natural language) were available, this
route was not (easily) pursued.
Still, the minimised model, together with the simulations in Supremica

strengthens the confidence in the results from the learning process. These
models definitely serve as a formal documentation that provides insights into
the decisions made during the design and implementation of the LSM .

Threats to Validity

In this case study, we investigated only one problem instance and so cannot
make any concrete conclusions on the generalisation or the scalability of the
approach. We could have accidentally chosen a piece of MATLAB code that
lent itself particularly well to automatic learning. Indeed, we took a piece of
code that we were already familiar with. Furthermore, the validation of the
learnt model was admittedly rather superficial, visual inspection and compar-
ison of simulation results between the learnt model and the actual MATLAB
code. Ideally, we should have used the learnt model to assert functional prop-
erties of the MATLAB code. The closest we got in this respect was the known
bug in the code, that could be shown to also be present in the learnt model.
However, we did use a general automata learning framework that was not

tailored specifically to our case study; the only thing that was specifically
implemented was the interface between the learning framework and MATLAB.
Even so, that interface was intentionally kept general so that similar case
studies of other pieces of code can be performed in the future to truly assess
the validity of the presented approach.

5 Insights and Discussion
We have successfully learned a formal model of the LSM and have validated
the model using multiple methods. In this section we present the insights
gained from this case study and discuss directions for possible future research.

C20

5 Insights and Discussion

5.1 Towards Formal Software Development

The primary motivation for this work is to overcome the limitations in man-
ual model construction so that techniques like formal verification and formal
synthesis can be used to guarantee the correctness of software, which is espe-
cially important for autonomous driving, without disrupting current industrial
practices. Insights from this case study can be used to scale active learning to
obtain formal models for safety-critical software development. The presented
approach is independent of the semantics of the implementation languages
and therefore can be a valuable tool to obtain formal models from automotive
software. The only requirement to seamlessly integrate this approach with the
daily engineering workflow is the possibility to establish an interface between
the production code and the learning algorithms. Such a seamless integration
makes it easier to use formal methods not only for safety-critical software but
also for other automotive software (e.g. infotainment).
In this paper, we only focus on automatically learning a formal model of the

LSM , and do not focus on any kind of formal analysis on the learnt model.
Formal analysis using different verification and synthesis tools can directly be
done on the models learnt using Supremica, in a similar way as presented
in [16], [52]. Of course, the learnt models must be translated into an input
format suitable for the particular tool.

Continuous Formal Development

With increasing complexity, software development in the automotive industry
is adopting new model-based development approaches in the software develop-
ment life cycle (SDLC) [53]–[56]. Quality assurance in such approaches relies
on continuous integration methods where continuous testing is vital. How-
ever, safety critical software requires strict measures that are guaranteed only
by formal approaches. Continuous formal verification [57] is a viable solu-
tion in this regard. Though there is a need for significant amount of research
to adopt a continuous formal verification process for automotive SDLC, we
think that active automata learning will play a major role in establishing such
a workflow.

C21

Paper C

5.2 Practical Challenges

Interaction with the SUL

The interaction with real-life systems and the construction of application-
specific learning setups remain as challenges for the automata learning com-
munity despite their application in different scenarios over the years [25], [39],
[40]. In this case study, we successfully demonstrated the use of active au-
tomata learning in the context of embedded automotive software implemented
in MATLAB, a new application area. To the best of our knowledge, this has
not been done previously. However, in the course of our study, there were a
few challenges.
A major aspect of the active learning process is to establish a proper inter-

face between the learner and the SUL. In our case, the interface between the
learner (Scala) and the SUL (MATLAB) is achieved through MATLAB-Java
integration using the MATLAB Engine API for Java [50] as described in Sec-
tion 4.2. As such an interface involves different type systems, the dynamically
typed MATLAB and the statically typed Java and Scala, the risk of runtime
type mismatch errors is increased. Another challenge is to establish an ap-
propriate abstraction such that the learner can obtain necessary information
about the alphabet to actively interact with the SUL. In this study, the aim
is to learn a model of the LSM . Therefore, all external dependencies were
abstracted such that the learner can easily interact with the SUL. However,
we foresee that data dependencies between different methods and user defined
classes could present additional challenges to scale this approach, for example
to learn a model of the Planner and the LSM together.
In this case study, both these aspects, the interface and providing the re-

quired information to the learner (events, event predicates, etc.), were achieved
manually. This effort needed to design and implement application specific
learning setups can be reduced by creating test-drivers [39] in the form of
standalone libraries and/or automatically constructing abstractions [23] for
seamless integration between the SUL and the learner. Any work in that
direction will make it easier to use popular learning frameworks like Learn-
Lib [28], thereby strengthening the application of active automata learning to
widespread industrial use within the automotive domain.

C22

5 Insights and Discussion

Efficiency of the learning algorithms

In this case study, we used two learning algorithms, the L∗ and the MPL, to
learn formal models from embedded automotive software. The implemented
L∗ algorithm failed to learn a complete model of the LSM due to two main
issues: the exponential growth of the observation table and the equivalence
queries. The problem with equivalence queries in this case study could be
attributed to the use of W-method for counterexample search. While these
issues are well known within the active learning community [25], we acknowl-
edge that the use of other efficient implementations of the classic L∗ algorithm
that includes optimizations to address these issues could produce different re-
sults in this context. Efforts to benchmark such algorithmic implementations
could be valuable in the long run.
The MPL is specifically developed to learn a modular system consisting of

several interacting automata. The main benefit of such a modular algorithm
is the reduction in search space of the learning process that is achieved by
exploiting the structure of the SUL. Unfortunately, in this case study due to
the structure of the LSM , we had to learn a monolithic model. However,
we foresee that the modular approach could potentially be helpful in tackling
the complexity that arises in learning larger systems. Research on defining
suitable system architectures and appropriate learning abstractions remains
to be done in this regard.

States vs events

Both the L∗ and the MPL require a definition of the events that are relevant
to the SUL. Interestingly, there is a trade-off between the size of the alphabet
and the size of the state-space; small alphabet leads to large state-space, and
vice versa. This trade-off is thus important, as the well known state-space
explosion is a real practical problem.

The current learning setup resulted in 3072 events, one for each unique
valuation of the input parameter, which was in the end reduced to 1536 events
with satisfiable predicates. However, it is possible to use each of the input
parameters as an event. This would result in a considerably smaller alphabet
of only 23 events. Using the 23 events to learn leads to a huge state-space for
both algorithms. For L∗ we noticed that the number of equivalence queries
significantly increases, and the MPL does not terminate as the state-space

C23

Paper C

becomes too large to handle.
Multiple interlaced lattice structures are seen in the partial models that were

obtained and these relate to the various combinations of input parameters.
The efficiency of the learning algorithms can be tweaked by leveraging this
trade-off when abstracting the code.

5.3 Software Reengineering and Reverse Engineering
Reverse engineering, which involves extracting high level specifications from
the original system can help to understand (ill-documented) legacy systems
and black-box systems and to reason about the correctness of the complete
software in complex systems. In addition, the development of intelligent au-
tonomous driving features typically undergoes several design iterations before
public deployment. In such a case, the formal approaches used to guarantee
correctness need to conform to the software reengineering process. Reengineer-
ing embedded automotive software is different from software reengineering in
other domains due to unique challenges [58], [59]. Experience from 10 years
of software reengineering activities at one of the big automotive suppliers [60]
reports that reengineering even a single module is expensive and it emphasizes
the need for methods and tools tailored to the automotive domain.
The formal models learnt through active learning can help identify unin-

tended changes between different software implementations during the soft-
ware reengineering phase. Also, during the reverse engineering phase active
learning can obtain high-level models from legacy systems and thereby help
to understand and reason about them. The work in this paper can be used as
a reference to identify possible future research in this regard.

6 Conclusion
In this paper, we have described a new, as far as we know, application area
of active automata learning, namely interfacing with and learning MATLAB
code. MATLAB/Simulink is currently the main engineering tool in the auto-
motive industry, so by showing the applicability of active learning of MATLAB
models, we take a huge step towards using formal approaches as a daily engi-
neering tool. This is especially important for the development of safety-critical
systems, like autonomous vehicles.

C24

6 Conclusion

To the development code of a lane change module, LSM , being developed
for autonomous vehicles, we applied two different active automata learning
algorithms. One, an adaption of the well-known L∗ algorithm. The other, an
algorithm, MPL, designed for learning a modular model, though here it was
used to learn a monolithic model due to the architecture of the LSM . L∗ was
unable to learn a model in 7 hours, and had memory issues, most likely due
to the large alphabet and the use of the W-method to find counterexamples.
MPL, on the other hand, having more information about the target system,
learned a model in roughly one minute. Note though that our aim was not to
benchmark L∗ vs MPL, but to show a proof-of-concept for the use of active
automata learning from MATLAB/Simulink code.
We validated the learnt model in four ways, which together made us confi-

dent that the learnt model was “correct”:

• The language minimisation of the MPL model is very similar to the
original meta-model of the LSM .

• Manual comparison of the learnt model to a manually developed model
of the LSM indicated close similarity.

• Simulating the learnt automaton in Supremica and comparing to the
simulation of the actual code in MATLAB/Simulink showed no obvious
discrepancies.

• A known existing bug in the development code could be found to exist
also in the learnt model.

Taken together, these make a strong argument for the usefulness of active
automata learning in an industrial setting within the automotive domain.
Learning a monolithic model is a bottle neck as it scales badly. Learning

modular models potentially allows to learn models of larger systems, which is
important for industrial acceptance so this is clearly future research. Cur-
rently, the main obstacle is how to define the modules and partition the
variables among the modules; if not done properly, the benefits of modular
learning are lost.

There are existing learning frameworks, like LearnLib [28] and Tomte [23],
that could potentially include more efficient algorithms than our own adaption
of L∗. Furthermore, learning richer structures (but with the same expressive
power), like extended finite state-machines [24], is definitely an interesting
topic for further research.

C25

Paper C

All in all, our goal is to make active automata learning a tool to aid
widespread adoption of formal methods in day to day software development
within the automotive industry, in much the same way as MATLAB currently
is.

References
[1] T. Litman, Autonomous vehicle implementation predictions. Victoria,

Canada: Victoria Transport Policy Institute, 2020.
[2] Koopman, Philip and Wagner, Michael, “Autonomous vehicle safety: An

interdisciplinary challenge”, IEEE Intelligent Transportation Systems
Magazine, vol. 9, no. 1, pp. 90–96, 2017.

[3] M. Broy, I. H. Kruger, A. Pretschner, and C. Salzmann, “Engineering
automotive software”, Proceedings of the IEEE, vol. 95, no. 2, pp. 356–
373, 2007.

[4] M. Broy, “Challenges in automotive software engineering”, in Proceed-
ings of the 28th International Conference on Software Engineering, ser. ICSE
’06, Shanghai, China: Association for Computing Machinery, 2006, pp. 33–
42, isbn: 1595933751.

[5] G. Liebel, N. Marko, M. Tichy, A. Leitner, and J. Hansson, “Model-
based engineering in the embedded systems domain: An industrial sur-
vey on the state-of-practice”, Software & Systems Modeling, vol. 17,
no. 1, pp. 91–113, 2018.

[6] A. Charfi Smaoui, F. Liu, and C. Mraidha, “A Model Based System
Engineering Methodology for an Autonomous Driving System Design”,
in 25th ITS World Congress, Copenhagen, Denmark: HAL, Sep. 2018.

[7] P. Struss and C. Price, “Model-based systems in the automotive indus-
try”, AI magazine, vol. 24, no. 4, pp. 17–17, 2003.

[8] J. Friedman, “Matlab/simulink for automotive systems design”, in Pro-
ceedings of the Design Automation & Test in Europe Conference, vol. 1,
Munich, Germany: IEEE, 2006, pp. 1–2.

C26

References

[9] H. Altinger, F. Wotawa, and M. Schurius, “Testing methods used in
the automotive industry: Results from a survey”, in Proceedings of the
2014 Workshop on Joining AcadeMiA and Industry Contributions to
Test Automation and Model-Based Testing, ser. JAMAICA 2014, San
Jose, CA, USA: Association for Computing Machinery, 2014, pp. 1–6,
isbn: 9781450329330.

[10] N. Kalra and S. M. Paddock, “Driving to safety: How many miles of
driving would it take to demonstrate autonomous vehicle reliability?”,
Transportation Research Part A: Policy and Practice, vol. 94, pp. 182–
193, 2016.

[11] M. Luckcuck, M. Farrell, L. A. Dennis, C. Dixon, and M. Fisher, “Formal
specification and verification of autonomous robotic systems: A survey”,
ACM Computing Surveys (CSUR), vol. 52, no. 5, pp. 1–41, 2019.

[12] J. Guiochet, M. Machin, and H. Waeselynck, “Safety-critical advanced
robots: A survey”, Robotics and Autonomous Systems, vol. 94, pp. 43–
52, 2017.

[13] The MathWorks Inc., Matlab products, 2020.
[14] F. Leitner-Fischer and S. Leue, Simulink design verifier vs. spin: A com-

parative case study, 2008.
[15] M. Schurenberg, Scalability analysis of the simulink design verifier on

an avionic system, 2012.
[16] Y. Selvaraj, W. Ahrendt, and M. Fabian, “Verification of decision mak-

ing software in an autonomous vehicle: An industrial case study”, in
Formal Methods for Industrial Critical Systems, Cham: Springer Inter-
national Publishing, 2019, pp. 143–159.

[17] A. Mashkoor, F. Kossak, and A. Egyed, “Evaluating the suitability of
state-based formal methods for industrial deployment”, Software: Prac-
tice and Experience, vol. 48, no. 12, pp. 2350–2379, 2018.

[18] C. Baier and J.-P. Katoen, Principles of model checking. MIT press,
2008.

[19] P. J. Ramadge and W. M. Wonham, “The control of discrete event
systems”, Proceedings of the IEEE, vol. 77, no. 1, pp. 81–98, 1989.

C27

Paper C

[20] X. Liu, H. Yang, and H. Zedan, “Formal methods for the re-engineering
of computing systems: A comparison”, in Proceedings Twenty-First An-
nual International Computer Software and Applications Conference (COMP-
SAC’97), Washington, D.C.: IEEE, 1997, pp. 409–414.

[21] D. Angluin, “Learning regular sets from queries and counterexamples”,
Information and Computation, vol. 75, no. 2, pp. 87–106, 1987.

[22] B. Steffen, F. Howar, and M. Merten, “Introduction to active automata
learning from a practical perspective”, in International School on For-
mal Methods for the Design of Computer, Communication and Software
Systems, Berlin, Heidelberg: Springer, 2011, pp. 256–296.

[23] F. Aarts, “Tomte: Bridging the gap between active learning and real-
world systems”, PhD thesis, [Sl: sn], 2014.

[24] S. Cassel, F. Howar, B. Jonsson, and B. Steffen, “Active learning for
extended finite state machines”, Formal Aspects of Computing, vol. 28,
no. 2, pp. 233–263, 2016.

[25] F. Howar and B. Steffen, “Active automata learning in practice”, in Ma-
chine Learning for Dynamic Software Analysis: Potentials and Limits,
Cham: Springer International Publishing, 2018, pp. 123–148.

[26] A. Farooqui, F. Hagebring, and M. Fabian, Active learning of modular
plant models, To appear, 2020.

[27] C. de la Higuera, Grammatical Inference: Learning Automata and Gram-
mars. New York, NY, USA: Cambridge University Press, 2010.

[28] M. Isberner, F. Howar, and B. Steffen, “The open-source learnlib”, in In-
ternational Conference on Computer Aided Verification, Cham: Springer
International Publishing, 2015, pp. 487–495.

[29] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, H.
Zheng, et al., “Bandera: Extracting finite-state models from java source
code”, in Proceedings of the 2000 International Conference on Software
Engineering. ICSE 2000 the New Millennium, Limerick, Ireland: IEEE,
2000, pp. 439–448.

[30] G. J. Holzmann, “From code to models”, in Proceedings Second Inter-
national Conference on Application of Concurrency to System Design,
Newcastle upon Tyne, UK: IEEE, 2001, pp. 3–10.

C28

References

[31] G. J. Holzmann and M. H. Smith, “A practical method for verifying
event-driven software”, in Proceedings of the 1999 International Confer-
ence on Software Engineering (IEEE Cat. No. 99CB37002), Los Ange-
les, CA, USA: IEEE, 1999, pp. 597–607.

[32] R. Reicherdt and S. Glesner, “Formal verification of discrete-time mat-
lab/simulink models using boogie”, in International Conference on Soft-
ware Engineering and Formal Methods, Cham: Springer International
Publishing, 2014, pp. 190–204.

[33] D. Araiza-Illan, K. Eder, and A. Richards, “Formal verification of con-
trol systems’ properties with theorem proving”, in 2014 UKACC In-
ternational Conference on Control (CONTROL), Loughborough, UK:
IEEE, 2014, pp. 244–249.

[34] H. Fang, J. Guo, H. Zhu, and J. Shi, “Formal verification and simu-
lation: Co-verification for subway control systems”, in 2012 Sixth In-
ternational Symposium on Theoretical Aspects of Software Engineering,
Beijing, China: IEEE, 2012, pp. 145–152.

[35] B. Jonsson, “Learning of automata models extended with data”, in For-
mal Methods for Eternal Networked Software Systems: 11th Interna-
tional School on Formal Methods for the Design of Computer, Commu-
nication and Software Systems, SFM 2011, Bertinoro, Italy, June 13-18,
2011. Advanced Lectures. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 327–349, isbn: 978-3-642-21455-4.

[36] F. Aarts, J. Schmaltz, and F. Vaandrager, “Inference and abstraction of
the biometric passport”, in Leveraging Applications of Formal Methods,
Verification, and Validation, T. Margaria and B. Steffen, Eds., Berlin,
Heidelberg: Springer, 2010, pp. 673–686, isbn: 978-3-642-16558-0.

[37] F. Aarts, J. De Ruiter, and E. Poll, “Formal models of bank cards for
free”, in 2013 IEEE Sixth International Conference on Software Test-
ing, Verification and Validation Workshops, Luxembourg: IEEE, 2013,
pp. 461–468.

[38] W. Smeenk, J. Moerman, F. Vaandrager, and D. N. Jansen, “Applying
automata learning to embedded control software”, in Formal Methods
and Software Engineering, M. Butler, S. Conchon, and F. Zaïdi, Eds.,
Cham: Springer International Publishing, 2015, pp. 67–83, isbn: 978-3-
319-25423-4.

C29

Paper C

[39] M. Merten, M. Isberner, F. Howar, B. Steffen, and T. Margaria, “Au-
tomated learning setups in automata learning”, in International Sym-
posium On Leveraging Applications of Formal Methods, Verification and
Validation, Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 591–
607.

[40] M. Merten, “Active automata learning for real life applications”, PhD
thesis, TU Dortmund University, 2013.

[41] S. Kunze, W. Mostowski, M. R. Mousavi, and M. Varshosaz, “Gener-
ation of failure models through automata learning”, in 2016 Workshop
on Automotive Systems/Software Architectures (WASA), Venice, Italy:
IEEE, 2016, pp. 22–25.

[42] M. Shahbaz, K. C. Shashidhar, and R. Eschbach, “Iterative refinement
of specification for component based embedded systems”, in Proceedings
of the 2011 International Symposium on Software Testing and Analysis,
ser. ISSTA ’11, Toronto, Ontario, Canada: Association for Computing
Machinery, 2011, pp. 276–286, isbn: 9781450305624.

[43] C. G. Cassandras and S. Lafortune, Introduction to discrete event sys-
tems. New York, NY: Springer Science & Business Media, 2009.

[44] H. Zhang, L. Feng, and Z. Li, “A learning-based synthesis approach to
the supremal nonblocking supervisor of discrete-event systems”, IEEE
Trans. on Automatic Control, vol. 63, no. 10, pp. 3345–3360, Oct. 2018,
issn: 0018-9286.

[45] A. Farooqui and M. Fabian, “Synthesis of supervisors for unknown plant
models using active learning”, in 2019 IEEE 15th International Confer-
ence on Automation Science and Engineering (CASE), Vancouver, BC,
Canada: IEEE, 2019, pp. 502–508.

[46] T. Chow, “Testing software design modeled by finite-state machines”,
IEEE Trans. on Software Engineering, vol. 4, no. 03, pp. 178–187, 1978,
issn: 0098-5589.

[47] F. B. Khendek, S. Fujiwara, G. Bochmann, F. Khendek, M. Amalou,
and A. Ghedamsi, “Test selection based on finite state models”, IEEE
Transactions on software engineering, vol. 17, no. 591-603, pp. 10–1109,
1991.

[48] The MathWorks Inc., Matlab, 2020.

C30

References

[49] M. Odersky, L. Spoon, and B. Venners, Programming in Scala. Califor-
nia: Artima Inc, 2008.

[50] The MathWorks Inc., Java engine api summary, 2020.
[51] R. Malik, K. Akesson, H. Flordal, and M. Fabian, “Supremica-An effi-

cient tool for large-scale discrete event systems”, IFAC-PapersOnLine,
vol. 50, no. 1, pp. 5794–5799, 2017, 20th IFAC World Congress, issn:
2405-8963.

[52] A. Zita, S. Mohajerani, and M. Fabian, “Application of formal verifica-
tion to the lane change module of an autonomous vehicle”, in 2017 13th
IEEE Conference on Automation Science and Engineering (CASE), IEEE,
2017, pp. 932–937.

[53] A. Rausch, O. Brox, A. Grewe, M. Ibe, S. Jauns-Seyfried, C. Knieke,
M. Körner, S. Küpper, M. Mauritz, H. Peters, et al., “Managed and
continuous evolution of dependable automotive software systems”, in
Proceedings of the 10th Symposium on Automotive Powertrain Control
Systems, Braunschweig: Cramer, 2014, pp. 15–51.

[54] M. Patil and S. Annamaneni, “Model based system engineering (mbse)
for accelerating software development cycle”, L&T Technology Services
White Paper, Tech. Rep., 2015.

[55] K. Kubiček, M. Čech, and J. Škach, “Continuous enhancement in model-
based software development and recent trends”, in 2019 24th IEEE In-
ternational Conference on Emerging Technologies and Factory Automa-
tion (ETFA), Zaragoza, Spain: IEEE, 2019, pp. 71–78.

[56] K. M. Cie, “Agile in automotive–state of practice 2015”, Study, Korn-
westheim, p. 58, 2015.

[57] F. R. Monteiro, M. Y. R. Gadelha, and L. C. Cordeiro, “Boost the im-
pact of continuous formal verification in industry”, CoRR, vol. abs/1904.06152,
2019.

[58] A. Thums and J. Quante, “Reengineering embedded automotive soft-
ware”, in 2012 28th IEEE International Conference on Software Main-
tenance (ICSM), Trento, Italy: IEEE, 2012, pp. 493–502.

C31

Paper C

[59] V. Schulte-Coerne, A. Thums, and J. Quante, “Challenges in reengineer-
ing automotive software”, in 2009 13th European Conference on Soft-
ware Maintenance and Reengineering, Kaiserslautern, Germany: IEEE,
2009, pp. 315–316.

[60] J. Quante, “Reengineering automotive software at bosch”, Softwaretechnik-
Trends, vol. 31, no. 2, 2011.

C32

	Abstract
	List of Papers
	Acknowledgements
	Acronyms
	I Overview
	1 Introduction
	1.1 Industrial Challenges
	1.2 Research Questions
	1.3 Scientific Contributions
	1.4 Thesis Structure

	2 The Question of Proof
	2.1 Conformance to Safety Standards
	ISO 26262
	Other Relevant Standards

	2.2 Testing, Simulation, and Miles Driven
	2.3 Formal Verification

	3 Formal Methods
	3.1 Supervisory Control Theory
	3.2 Model Checking
	3.3 Deductive Verification

	4 Provably Correct Decision-Making
	4.1 Specify to Prove
	4.2 Towards Provable Correctness and Completeness
	4.3 Models - Good, Bad, and Useful
	4.4 Hybrid System Verification
	The Safety Monitor
	Ego-vehicle Motion Model
	Constraint Generation

	5 Summary of Included Papers
	6 Concluding Remarks and Future Work
	6.1 Future Work

	References

	II Papers
	A Verification of Decision Making Software
	1 Introduction and Related Work
	2 Problem Description
	3 Supervisory Control Theory
	3.1 Nonblocking Verification
	3.2 Verification of LSM in Supremica

	4 Model Checking
	4.1 Temporal Logic of Actions
	4.2 Verification of LSM in TLA+

	5 Deductive Verification
	5.1 SPARK
	5.2 Verification of LSM in SPARK

	6 Insights and Discussion
	7 Conclusion
	References

	B Supervisory Control Theory in System Safety Analysis
	1 Introduction
	2 Fault Tree Analysis
	2.1 Pressure Tank System

	3 Supervisory Control Theory
	3.1 Nonblocking verification

	4 FTA in Supremica
	4.1 Modelling
	4.2 Verification
	4.3 Minimal Cut Sets

	5 Conclusion
	References

	C Automatically Learning Formal Models
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 The L* Algorithm
	2.2 The Modular Plant Learner

	3 System Under Learning
	4 Learning setup
	4.1 Abstracting the Code
	4.2 Interaction With the SUL
	4.3 Learning Outcome
	4.4 Model Validation

	5 Insights and Discussion
	5.1 Towards Formal Software Development
	5.2 Practical Challenges
	5.3 Software Reengineering and Reverse Engineering

	6 Conclusion
	References

