8,951 research outputs found

    First-order logic learning in artificial neural networks

    Get PDF
    Artificial Neural Networks have previously been applied in neuro-symbolic learning to learn ground logic program rules. However, there are few results of learning relations using neuro-symbolic learning. This paper presents the system PAN, which can learn relations. The inputs to PAN are one or more atoms, representing the conditions of a logic rule, and the output is the conclusion of the rule. The symbolic inputs may include functional terms of arbitrary depth and arity, and the output may include terms constructed from the input functors. Symbolic inputs are encoded as an integer using an invertible encoding function, which is used in reverse to extract the output terms. The main advance of this system is a convention to allow construction of Artificial Neural Networks able to learn rules with the same power of expression as first order definite clauses. The system is tested on three examples and the results are discussed

    Balanced Quantization: An Effective and Efficient Approach to Quantized Neural Networks

    Full text link
    Quantized Neural Networks (QNNs), which use low bitwidth numbers for representing parameters and performing computations, have been proposed to reduce the computation complexity, storage size and memory usage. In QNNs, parameters and activations are uniformly quantized, such that the multiplications and additions can be accelerated by bitwise operations. However, distributions of parameters in Neural Networks are often imbalanced, such that the uniform quantization determined from extremal values may under utilize available bitwidth. In this paper, we propose a novel quantization method that can ensure the balance of distributions of quantized values. Our method first recursively partitions the parameters by percentiles into balanced bins, and then applies uniform quantization. We also introduce computationally cheaper approximations of percentiles to reduce the computation overhead introduced. Overall, our method improves the prediction accuracies of QNNs without introducing extra computation during inference, has negligible impact on training speed, and is applicable to both Convolutional Neural Networks and Recurrent Neural Networks. Experiments on standard datasets including ImageNet and Penn Treebank confirm the effectiveness of our method. On ImageNet, the top-5 error rate of our 4-bit quantized GoogLeNet model is 12.7\%, which is superior to the state-of-the-arts of QNNs
    • …
    corecore