
Guillame-Bert, M., Broda, K. & Garcez, A. d'Avila (2010). First-order logic learning in artificial neural

networks. International Joint Conference on Neural Networks (IJCNN 2010), doi:

10.1109/IJCNN.2010.5596491 <http://dx.doi.org/10.1109/IJCNN.2010.5596491 >

City Research Online

Original citation: Guillame-Bert, M., Broda, K. & Garcez, A. d'Avila (2010). First-order logic learning

in artificial neural networks. International Joint Conference on Neural Networks (IJCNN 2010), doi:

10.1109/IJCNN.2010.5596491 <http://dx.doi.org/10.1109/IJCNN.2010.5596491 >

Permanent City Research Online URL: http://openaccess.city.ac.uk/297/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. Users may download and/ or print

one copy of any article(s) in City Research Online to facilitate their private study or for non-

commercial research. Users may not engage in further distribution of the material or use it for any

profit-making activities or any commercial gain. All material in City Research Online is checked for

eligibility for copyright before being made available in the live archive. URLs from City Research

Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised to

check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/2707714?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk
http://www.city.ac.uk/

First-order Logic Learning in Artificial Neural Networks

Mathieu Guillame-Bert, Krysia Broda and Artur d’Avila Garcez

Abstract— Artificial Neural Networks have previously been
applied in neuro-symbolic learning to learn ground logic pro-
gram rules. However, there are few results of learning relations
using neuro-symbolic learning. This paper presents the system
PAN, which can learn relations defined by a logic program
clause. The inputs to PAN are one or more atoms, representing
the conditions of a logic rule, and the output is the conclusion
of the rule. The symbolic inputs may include functional terms
of arbitrary depth and arity, and the output may include
terms constructed from the input functors. Symbolic inputs
are encoded as an integer using an invertible encoding function,
which is used in reverse to extract the output terms. The main
advance of this system is a convention to allow construction of
Artificial Neural Networks able to learn rules with the same
power of expression as first order definite clauses. The learning
process is insensitive to noisy data thanks to the use of Artificial
Neural Networks. The system is tested on two domains.

I. INTRODUCTION

This paper is concerned with the application of Artificial
Neural Networks (ANNs) to inductive reasoning. Induction
is a reasoning process which builds new general knowledge,
called hypotheses, from initial knowledge and some obser-
vations, or examples.

In comparison with other machine learning techniques, the
ANN method is relatively good with noise, algorithmically
cheap, easy to use and shows good results in many domains
[4], [5], [3]. However, the method has two disadvantages:
(i) efficiency depends on the initial chosen architecture of
the network and the training parameters, and (ii) inferred
hypotheses are not directly available – normally, the only
operation is to use the trained network as an oracle.

To address these deficiencies various studies of different
ways to build the artificial neural network and to extract the
encoded hypotheses have been made [2], [8]. One of the
methods used in many of those techniques uses translation
between a logic programming (LP) language and ANNs.
Logic Programming languages are both expressive and rel-
atively easily understood by humans. They are the focus
of (observational predicate) Inductive Logic Programming
(ILP) techniques, for example PROGOL [12], whereby Horn
clause hypotheses can be learned which, in conjunction with
background information, imply given observations.

Translation techniques between ANNs and ground logic
programs, commonly known as neural-symbolic learning,
have been applied in [7], [2], [11]. Particular ANN archi-
tectures easily allow to simulate the “bottom-up” or for-
ward derivation behaviour of a logic program. The reverse

Mathieu Guillame-Bert, Krysia Broda, Dept. of Computing, Imperial
College ,180 Queen’s Gate, London SW7 2BZ; email: {mathieu.guillame-
bert08, k.broda }@imperial.ac.uk

Artur Garcez, Dept. of Computing, City Univeristy, London EC1V 0HB;
email:aag@soi.city.ac.uk

direction, though harder, allows to analyse an ANN in an
understandable way. However, in order to perform induction,
an association between ANNs and more expressive first order
logic is required. This paper presents such an association
and is therefore a direct alternative solution to standard ILP
techniques [12]. The expectations are to use the robustness
and the highly parallel architecture to propose an efficient
way to do induction on predicate logic programs.

Presented here is PAN (Predicate Association Network),
which performs induction on predicate logic programs based
on ANNs. This system allows to include initial background
knowledge. The user can give a set of fixed rules which are
used recursively by the system, but may not be changed by
it. Secondly, the user can give a set of variable initial rules
that will be changed through the learning. In this paper we
will assume that the set of variable initial rules is empty.

In particular, we present an algorithm and results from
some initial experiments of relational learning in two prob-
lem domains, the Michalski train domain [10] and a chess
problem [14]. The algorithm employs an encoding function
that maps symbolic terms such as f(g(a, f(b))) to a natural
number. We prove that the encoding is injective and define its
inverse, which is simple to implement. The encoding is used
together with equality tests and the new concept of multi-
dimensional neurons to facilitate term propagation, so that
the learned rules are fully relational.

Section II defines some preliminary notions that are used
in PAN. Section III presents the convention used by the sys-
tem to represent and deal with logic terms. This convention
is based on the encoding of every (functional) term as a
natural number. The PAN system is presented in Section IV
and results of its use on examples are shown in Section VI.
The main features of the PAN system are summarised in
Section VII and compared with related work. The paper
concludes in Section VIII with future work.

II. PRELIMINARIES

This section presents various notions required to under-
stand the system described in Section IV. The notion of a
deduction rule is introduced to define in a intuitive way rules
based on the form Conditions ⇒ Conclusion. The notion
of a Multi-dimensional neuron is introduced as an extension
of common (single dimensional) neurons.

A. Deduction rules

Definition 1: A deduction rule, or rule, consists of a
conjunction of atoms and tests called the body, and an atom
called the head. The semantics is defined as follows: When
the body formula is evaluated as true, the rule fires, and the
head atom is said to be produced.

Definition 2: A test Un → {−1, 1}, where U is known
as the Herbrand universe and n is the test’s arity, is said to
succeed (fail) if the result is 1(−1) . A test is computed by
a test module and is associated with a logic formula that is
true for the given input iff the test succeeds for this input.
Equality (=) and inequality (6=) are tests of arity 2. The
function (>) is a test that only applies to integer terms.

Example 1: Here are some examples of deduction rules.

P (X, Y) ∧Q(X) ⇒ R(Y)
P (X, Y) ∧ P (Y, Z) ⇒ P (X, Z)

P (X, Y) ∧Q(f(X, Y), a) ⇒ R(g(Y))
P (list(a, list(b, list(c, list(T, 0))))) ⇒ Success

P (X) ∧Q(Y) ∧X = Y ⇒ R
It can thus be seen that a deduction rule expresses an

association between a set of atoms and a singleton atom.
In PAN, a learned rule is distributed in the network;

for example, the rule P (X, Y) ∧ P (Y, Z) ⇒ P (X, Z) is
represented in the network as P (X, Y) ∧ P (W,Z) ∧ (Y =
W)∧ (U = X)∧ (V = Z) ⇒ P (U, V) and P (X, f(X)) ⇒
Q(g(X)) is represented as P (X, Y) ∧ (Y = f(X)) ∧ (Z =
g(X)) ⇒ Q(Z). This use of equality is central to the
proposed system and its associated higher expressive power.

The allowed literals in the body and the head are restricted
by the language bias, which is a set of syntactic restrictions
on the rules the system is allowed to infer. For example
to infer rules with variable terms only. The language bias
allows the user to help the system by giving to it some
information on the syntax of rules that may be learned. This
improves the speed of the learning and may also improve
the generalization of the example – i.e. the language bias
reduces the number of training examples needed.

B. Multi-dimensional neurons

PAN requires neurons to carry vector values i.e. multi di-
mensional values. Such neurons are called Multi-dimensional
neurons. They are used to prevent the network converging
into undesirable states. For instance, suppose three logical
terms a, b and c are encoded as the respective integer values
1, 2 and 3 in an ANN, and for a given training example,
suppose that c is an expected term. Let an ANN with regular
single dimension neurons be presented with inputs 1, 2 and
3 and that it be trained to output 3. Since 3 = 1 + 2, the
ANN may produce the number 3 by adding 1+2. This is
meaningless from the point of view of the indices of a , b
and c. The multi dimensional neurons are used to avoid such
unwanted combinations.

In what follows, let V = {vi}i∈N be an infinite, nor-
malized, free family of vectors and BV the vector space
generated by V . That is ∀i, j s.t. i 6= j, the properties
vi · vi = 1 and vi · vj = 0 hold. Further, for all elements
v ∈ BV , a linear combination of elements of V equals v.

Definition 3: The Set multi-dimension activation function
multidim : R → BV is the neuron activation function defined
by multidim(x) = vbxc

The inverse function is defined as follows.

Definition 4: The Set single dimension activation function
invmultidim: BV → R extracts the index of the greatest
dimension of the input: invmultidim(X) = i where ∀j vi ·
X ≥ vj ·X

The property ∀x ∈ R, invmultidim(multidim(x)) =
bxc follows easily from the definition and properties of V .

In the case of the earlier example, the term a (index 1)
would be encoded as multidim(1) = v1, b as v2 and c as
v3. Since v1 ,v2 and v3 are linearly independent, the only
way to produce the output v3 is to take the input v3.

The functions multidim and invmultidim can be sim-
ulated using common neurons. However, for computational
efficiency, it is interesting to have special neurons for those
operations. The way to represent the multi-dimensional val-
ues, i.e. a vector value, is also important. In an ANN, for a
given multi-dimensional neuron, the number of non-null di-
mensions is often very small. But the index of the dimension
used can be important. For example, a common case is to
have a multi-dimensional neuron with a single dimension
non-null but with a very high index, for example v1010 .
It is therefore very important to not represent those multi
dimensional values as an array indexed by the dimension
number, but to use a mapping (like a simple table or a hash
table) between the index of the dimension and its component.

Definition 5: The Multi-dimensional sum activation func-
tion multidimSum : R∗ × B∗

V → BV computes the sum of
several multi-dimensional values as follows:

Let n be a neuron with the multidimSum activation
function and value(n) be its output. Then

value(n) =
∑

i∈I(n)

(wni value(i)) .
∑

j∈S(n)

(wnj value(j))

where I(n) and S(n) are sets of input (multi-dimensional)
neurons.

Remark 1: If I(n) or S(n) is empty the result is 0.

III. TERM ENCODING

In order to inject or extract terms in the system, a con-
vention to represent every logic term by a unique integer is
defined. This section presents the convention used in PAN.

The solution presented here is based on Cantor diag-
onalization. It utilises the function encode : T → N,
which associates a unique natural number with every term,
and the function encode−1 : N → T , which returns the
term associated with the input. This encoding is called the
Diagonal Term Encoding. It is based on an indexing function
Index : S → N which gives a unique index to every functor
and constant. (The function Index−1 : N → S is the inverse
of Index, i.e. Index−1(Index(S)) = S).

The diagonal term encoding has the advantage that com-
position and decomposition term operations can be defined
using simple arithmetic operations on integers. For example,
from the number n that represents the term f(a, g(b, f(c))),
it is possible to generate the natural numbers corresponding
to the function f , the first argument a, the second argument
g(b, f(c)) and its sub-arguments b, f(c) and c using only
simple arithmetic operations.

The encoding function uses the auxiliary functions Index′,
which extends Index to terms, E, which is a diagonalisation
of N2 (see figure 1), E′, the extension of E to lists, and E′′,
the recursive extension ofE′. The decoding function uses the
property that E is a bijection, shown in Theorem 1.

Example 2: Let the signature S consist of the constants
a, b and c and functor f . Let Index(a) = 1, Index(b) = 2,
Index(c) = 3 and Index(f) = 4.

The function Index′ : T → N+ recursively gives a list of
unique indices for any term t formed from S as follows.

Index′(t) =

 [Index(t), 0] if t is a constant
[Index(f), Index′(x0), ..., Index′(xn), 0]

if t = f(x0, ..., xn)
(1)

The pseudo inverse of Index′ is (Index′)−1:

(Index′)−1(X) =

f(t1, . . . , tn)

where X = [x0, x1, . . . , xn] ,
f = Index−1(x0), and
ti = (Index′)−1(xi)

(2)
Example 3:

Index′(a) = [1, 0]
Index′(f(b)) = [4, [2, 0] , 0]

Index′(f(a, f(b, c))) = [4, [1, 0] , [4, [2, 0] , [3, 0] , 0] , 0]
Now we define E : N2 → N, the basic diagonal function:

E(n1, n2) =
(n1 + n2)(n1 + n2 + 1)

2
+ n2 (3)

Theorem 1: The basic diagonal function E is a bijection
Proof: [Outline]

The proof that E is an injection is straightforward and
omitted here. We show E is a bijection by finding an inverse
of E. Given n ∈ N we define as follows the inverse of E to
be the total function D : N → N2

E−1(n) = D(n) = (n1, n2) :

p =

⌊√
1+8.n−1

2

⌋
n2 = n− p.(p+1)

2
n1 = p− n2

(4)

where p = n1 + n2 is an intermediate variable and let
D1(n) = n1 and D2(n) = n2.

It remains to show that D is indeed the inverse of E and
p, n1 and n2 are all natural numbers. The proof uses the fact
that for n ∈ N there is a value k ∈ N satisfying

k(k + 1)
2

≤ n <
(k + 1)(k + 2)

2
(5)

(i) Show E(n1, n2) = n. Using n1 + n2 = p and
n2 = n− p(p+1)

2 the definition of E(n1, n2) gives
E(n1, n2) = p(p+1)

2 + (n− p(p+1)
2) = n

(ii) Show p ∈ N. Let k ∈ N satisfy (5). Then k ≤ p <
k + 1 and hence p = k.

(iii) Show n2 ∈ N. By (4) n2 = n− p(p+1)
2 , and by (5)

and Case (ii) 0 ≤ n2 < k + 1.

(iv) Show n1 ∈ N. By (4) n1 = p− n2 and by (5) and
Case (iii) 0 ≤ n1 ≤ k.

Fig. 1. N2 to N correspondence

Next, E′ and D′, the extensions of E and D in N+ are
defined.

E′([n0, ..., nm]) =

 n0 if m = 0
E′([n0, ..., nm−2, E(nm−1, nm)])

if m > 0
(6)

D′(X) =
{

[0] if X = 0
[D1(X)] .D′(D2(X)) if X > 0 (7)

Remark 2: In 7 “.” is used for the list concatenation.
E′′ and D′′ are the recursive extensions of E′ and D′ in

N+, defined by

E′′(N) =

 N, if N is a number
E′(E′′(n0), ..., E′′(nm)),

where N = [n0, ..., nm] , if N is a list
(8)

D′′(X) =
[x0, D

′′(x1), ..., D′′(xn−1), xn]
where [x0, ..., xn] = D′(X) (9)

Remark 3: In 9, xn is always equal to zero.
Next we define encode : T → N and encode−1 : N → T :

encode(T) = E′′(Index′(T)) (10)

encode−1(N) = (Index′)−1(D′′(N)) (11)

The uniqueness property of E can be extended to the full
Diagonal Term Encoding that associates a unique natural
number to every term; i.e. it is injective.

Example 4: Here is an example of encoding the term
f(a, b) with index(a) = 1, index(b) = 2 and index(f) = 4:

encode(f(a, b)) = E′′([4, [1, 0], [2, 0], 0])
= E′([4, E′′([1, 0]), E′′([2, 0]), 0])
= E′([4, 1, 3, 0])
= E′([4, 1, E(3, 0)])
= E′([4, 1, 6]) = 775

To decode 775 requires first to compute D′(775).
D′(775) = [D1(775)].D′(D2(775))

= [4].D′(34)
= [4, 1, 3, 0]

The final list [4, 1, 3, 0] is called the Nat-List representation
of the original formula f(a, b). Finally, encode−1(775) =
(Index′)−1([4, D′′(1), D′′(3), 0]) = f(a, b)

The basic diagonal function E and its inverse E−1 can
be computed with elementary arithmetic functions. This
property of the Diagonal Term Encoding allows to extract
the natural numbers representing the sub-terms of an encoded
term. For example, from a number that represents the term
f(a, g(b)), it is simple to extract the index of f and the
numbers that represent a and g(b).

Suppose E, D1 and D2 are neuron activation functions.
Since D1, D2 and E are simple unconditional functions, they
can be implemented by a set of simple neurons with basic
activation functions – namely addition and multiplication
operations and for D1 and D2 also the square root operation.
It follows from (9), (11) and (13) that the encoding integer
of the ith component of the list that is encoded as an integer
N is equal to D1(Di

2(N)). This computation is performed
by an extraction neuron with activation function

extracti(N) =
{

D1(N) if i = 0
D1(Di

2(N)) if i > 0 (12)

For a given term F , if L is the natural number list repre-
sentation of F and N its final encoding, then extract0(N)
returns the functor of F and extracti(N) returns the ith

component of L. If the ith component does not exist,
D1(Di

2(N)) = 0. In the case that t is the integer that repre-
sents the term f(x1, ..., xn), i.e. t = encode(f(x1, ..., xn)),
then extracti(t) = encode(xi) if i > 0 and extract0(t) =
index(f) otherwise. It is possible to construct extracti using
several simple neurons.

IV. RELATIONAL NETWORK LEARNING : SYSTEM PAN

The PAN system uses ANN learning techniques to infer
deduction rule associations between sets of atoms as given
in Definition 1. A training example I ⇒ O is an association
between a set of input atoms I and an expected output atom
O. The ANN architecture used in PAN is precisely defined by
a careful assembling of sub-ANNs described below. In what
follows, the conventions used to load and read a set of atoms
from PAN are given first. These are followed by an overview
of the architecture of PAN and finally a presentation of the
idea underlying its assembly is given.

The main steps of using PAN are the following:
Let b ∈ B be a language bias, and p ∈ P be a relaxation

function. Let N be a specific instance of PAN.
1) Construct N using bias b as outlined in Section IV-C.
2) Train N on the set of training examples i.e.

• For every training example I ⇒ O and every
epoch i.e training step
a) Load the input atoms I and run the network
b) Compute the error of the output neurons based

on the expected output atoms O
c) Apply the back propagation algorithm

3) If the training converges return the final network N ′

4) Otherwise, relax b according to p1

5) Repeat from step 2

1Here a relaxation function p is used to increase the complexity of the
rules that the system is able to learn.

A. Input convention

Definition 6: The replication parameter of a language
bias is the maximum number of times any predicate can
appear in the body of a rule.

The training is done on a finite set of training examples.
Let Ψin (respectively Ψout) be the sets of predicates oc-
curring in the input (respectively output) training examples.
For every predicate P ∈ Ψin, the network associates r
activation input neurons {aPi}i∈[1,r], where r is the repli-
cation parameter of the language bias. For every activation
input neuron aPi

, the network associates m argument input
neurons {bPij

}j∈[1,m], where m is the arity of predicate P .
Let A = {aPi

}P∈Ψin,i∈[1,r] be the set of activation input
neurons of the network N . Let I ⇒ O be a given training
example and I ′ = I ∪ {Θ}, where Θ is an atom based on
a reserved predicate that should never be presented to the
system.

Let M be the set of all the possible injective mappings
m : A → I ′, with the condition that m can map a ∈ A
to e ∈ I ′ if the predicate of e is the same of the predicate
bound to a, or if e = Θ. The sequence of steps to load a set
of atoms I in a network N is the following:

1) Compute I ′ and M
2) For every m ∈ M

a) For all neuron aPi
∈ A

i) Set value(aPi
) =

{
1 if m(aPi

) 6= Θ
−1 if m(aPi

) = Θ
ii) For all j, set

value(bPij) =

{
encode(ti) if j ≤ r

0 if j > r

with m(bPij
) = P (t1, . . . , tr)

b) Run the network once

B. Output convention

For every predicate P ∈ Ψout, the network associates
an activation output neuron. For every activation output
neuron, the network associates r argument output neurons
{dPi}i∈[1,r], with r the arity of the predicate P . A is the set
of output activation neurons of the network N . dPi

is the ith

output argument neuron of P .
The following sequence of steps is used to read the set of

atoms O from a network N :
1) Set O = ∅
2) For all neuron cP ∈ A with value(cP) > 0.5

a) Add the atom P (t1, . . . , tp) to O,
with ti = encode−1(value(dPi

))

C. Predicate Association Network

This subsection presents the architecture of PAN, a non-
recursive artificial neural network which uses special neurons
called modules. Each of these modules has specific behaviors
that can be simulated by a recursive ANN. The modules are
immune to backpropagation learning algorithm – i.e. in the
case they are simulated by sub-ANNs, the backpropagation
learning algorithm is not allowed to change their weights.

There are five main module types; Activation modules:
Memory and Extended Equality modules; Term modules:
Extended Memory, Decomposition and Composition mod-
ules. In activation modules the carried values represent the
activation level (as for a normal ANN), and in term modules
the carried values represent logic terms through the term
encoding convention. Each term module computes a precise
operation on its inputs with a predicate logic equivalence. For
example, the decomposition module decomposes terms – i.e.
from the term f(a, g(b)), it computes the terms a, g(b) and
b. These five modules are briefly explained below. PAN is
a careful assembling of these different modules into several
layers, where each layer performs a specific task.

���������	

���������������

�������������������	��
������

��������������	

���������

��
�����
�
�������	��
���������

��
�����
�

��������������

�����������������

 ������������������!"���!�

��
�
��#���
������!"���!���
�
��
�

�������������"������������"�

�����������

�������"���������������

��"�	���

�����������������������

$����������������!"���!�������
�

��"�	���
��#���
������!"���!�

������
���"�	���
��
���������

�����"������������"

���������

�������"��������

����������	

�����������

Fig. 2. Run of PAN after learning the rule P (X) ∧ P (f(X)) ⇒
Q(f(f(X)))

Globally, the organization of the modules in the PAN
emulates three operations on a set of input atoms I .

1) Decomposition of terms contained in the atoms of I .
2) Evaluation and storage of patterns of tests appearing

between different atoms of I . For example, the pres-
ence of an atom P (X, X), the presence of two atoms
P (X) and Q(f(X)), or the presence of two atoms
P (X) and Q(Y) with X < Y .

3) Generation of output atoms. The arguments of the
output atoms are constructed from terms obtained by
step 1. For example, if the term g(a) is present in
the system (step 1), PAN can build the output atom
P (h(g(a))) based on g(a), the function h and the
predicate P .

During the learning, the back-propagation algorithm builds
the pattern of tests equivalent to a rule that explains the
training examples.

Figure 2 represents informally the work done by an already
trained PAN on a set of input atoms. PAN was trained on a
set of examples (not displayed here) that forced it to learn
the rule P (X)∧P (f(X)) ⇒ Q(f(f(X))). The set of input
atoms given to PAN is {P (a), Q(b), P (f(a))}.

Below is a brief description of each module. The Memory
module remembers if the input has been activated in the past
during training. Its behavior is equivalent to a SR (set-reset)
flip-flop with the input node corresponding to the S input.

The Extended equality module tests whether the natural
numbers encoding two terms are equal. A graphical repre-
sentation is shown in Figure 3. Notice that since 0 represents
the absence of a term, the extended equality module does not
fire if both inputs are 0.

Fig. 3. Extended equality module

Fig. 4. Extended memory module

The Extended memory module remembers the last value
presented on the data input when the activation input was ac-
tivated. Its behavior is more or less equivalent to a processor
register. Figure 4 shows a graphical representation.

The Decomposition module decomposes terms by imple-
menting the extract function of Equation 12.

The Composition module implements the encode function
of Equation 10.

V. DETAILED EXAMPLE OF RUN

This section presents in detail a very simple example
running PAN including loading a set of atoms, informal
interrelation of the neurons’ values, recovery of the output
atoms and learning though the back-propagation algorithm.

For this example, to keep the network small a strong
language bias is used to build the PAN. The system is not
allowed to compose terms or combine tests. It only has the
equality test over terms, is not allowed to learn rules with
ground terms and is not allowed to replicate input predicates.

The initial PAN does not encode any rule. It has three
input neurons aP1 , bP1,1 and bP1,2 , two output neurons cR

and dR1 and input the set of atoms {P (a, b), P (f(b), b)}.
The injective mapping M has three elements {aP1 →

P (a, b), aP1 → P (f(b), b) and aP1 → Θ}. Loading of the
input is made in three steps. Figure 5 gives the value of the
inputs neurons over the three steps and Figure 6 shows a

sub part of the PAN (only the interresting neurons for this
example are displayed).

Step 1 2 3
aP1 1 1 0
bP1,1 encode(a) encode(f(b)) 0
bP1,2 encode(b) encode(b) 0

Fig. 5. Input Convention mapping M

Activation

Argument

Extented equality=

Sigmoid

Variable weight
Fixe weight

P

aP1 bP1,1 bP1,2

m1

Memory

Output

Input

e e

=

"f"

=

0 1

m2 m3

=

m4 M1

cQ

Q

dQ1

Extended memory

mi

Mi

ej Extract
j

Set multi dim.

Inv. multi dim.

Multi dim. sum

"f" index(f) constant

Multi dim.

M2

Fig. 6. Illustration of the PAN

Step 1 2 3
m1 1 1 1
m2 -1 -1 -1
m3 -1 1 1
m4 -1 1 1
M1 0 encode(b) encode(b)
M2 encode(a) encode(f(b)) encode(f(b))

Fig. 7. Memory and Extended memory module Values

Figure 7 gives the value of the memory and extended
memory module after each step. The meaning of the different
memory modules is the following one: m1 = 1: at least one
occurrence of P (X, Y) exists.
m2 = 1: at least one occurrence of P (X, Y) and X = Y .
m3 = 1: at least one occurrence of P (X, Y) and Y = f(Z).
m4 = 1: at least one occurrence of P (X, Y) and Y = f(X).
M1 remembers the term Z when P (X, Y) and Y = f(Z).
M2 remembers the term X when P (X, Y) exists.

Suppose that the expected output atom is Q(b). The
expected output value of the PAN are cQ = 1 and dQ1 =
encode(b). The error is computed and the back propagation
algorithm is applied. The output argument dQ1 will converge
to be bound to M1. After training on this example and
depending on the other training examples, PAN could learn
rules such as P (X, Y)∧P (f(Y), Y) ⇒ Q(Y) or P (X, Y)∧
P (Z, Y) ⇒ Q(Y).

VI. INITIAL EXPERIMENTS

This section presents learning experiments using PAN. The
implementation has been developed in C++ and run on a

simple 2 GHz laptop. The first example shows the behavior of
PAN on a simple induction problem. The second experiment
evaluates the PAN on the chess endgame King-and-Rook
against King determination of legal positions problem. The
last run is the solution of Michalski’s train problem.

A. Simple learning

This example presents the result of attempting to learn the
rule P (X, f(X)) ∧ Q(g(X))) ⇒ R(h(f(X))) from a set
of training examples. Some of the training and evaluation
examples are presented in Figures 8 and 9. The actual sets
contained 20 training examples and 31 evaluation examples.
PAN achieved 100% success rate after 113 seconds running
time with the following structure: 6 input neurons, 1778
hidden neurons and 2 output neurons; of the hidden neurons,
52% were composition neurons, 35% multi-dimension acti-
vation neurons , 6% memory neurons, 1% extended equality
neurons.

{P (a, f(a)), Q(g(a))} ⇒ {R(h(f(a)))}
{P (b, f(b)), Q(g(b))} ⇒ {R(h(f(b)))}
{P (a, f(b)), Q(g(a))} ⇒ ∅
{P (a, b), Q(a)} ⇒ ∅
{P (a, a), Q(g(b))} ⇒ ∅
{P (a, a)} ⇒ ∅

Fig. 8. Part of the training set

{P (c, f(c)), Q(g(c))} ⇒ {R(h(f(c)))}
{P (d, f(d)), Q(g(d))} ⇒ {R(h(f(d)))}
{P (c, f(c))} ⇒ ∅
{P (d, f(d))} ⇒ ∅
{P (b, f(a))} ⇒ ∅
{P (a, f(b))} ⇒ ∅
{P (a, b)} ⇒ ∅

Fig. 9. Part of the evaluation set

B. Chess endgame King-and-Rook against King determina-
tion of legal positions problem

A legal configuration An illegal configuration

Fig. 10. Chess configurations

This problem classifies certain chess board configurations.
More precisely, without any chess knowledge rules, the
system has to learn to classify ”‘King-and-Rook against King
configurations”’ as legal (no piece can be taken) or illegal
(one of the piece can be taken). Figure 10 shows a legal and
an illegal configuration.

The problem was first proposed and tested on several
learning techniques by Muggleton [14] in 1986.

As an example, one of the many rules the system must
learn is that the white Rook can capture the black King
if their positions are aligned horizontally and the white
King is not between them. Using Wkx as the x coordinate
(column) of the white King, Wry as the y coordinate
(row) of the white Rook, etc., this rule can be logically
expressed by Game(Wkx,Wky,Wrx,Wry,Bkx, Bky) ∧
(Wry = Bky) ∧ ((Wky 6= Wry) ∨ (Lt(Wkx,Wrx) ∧
Lt(Wkx,Bkx)) ∨ (Lt(Wrx,Wkx) ∧ Lt(Bkx, Wkx))) ⇒
Illegal.

For the evaluation of PAN a 20 000 configurations
database was used and three experiments were made. For
each experiment, a small part of the database was used
to train the system and the remainder was used for the
evaluation.

PAN is initially fed with the two fixed background knowl-
edge predicates given in Muggleton’s experiments [14],
namely the predicate X < Y ⇒ Lt(X, Y) and the predicate
(X + 1 = Y) ∨ (X = Y) ∨ (X = Y + 1) ⇒ Adj(X, Y).

Figure 11 shows the number of examples used to train
the system, the number of examples to evaluate the system,
the duration of the training and the success rate of the
evaluations. In the three experiments, the produced PAN had
8 input neurons, 1 output neuron and 58 hidden neurons.

Experiment 1 2 3
Number of training examples 100 200 500
Number of evaluation test 19900 19800 19500
Training duration 4s 17s 43s
Success rate 91% 98% 100%

Fig. 11. King-and-Rook against King experiment’s results

C. Michalski’s train problem
The Michalski’s train problem, presented in [10], is a

binary classification problem on relational data. The data set
is composed of ten trains with different features (number of
cars, size of the cars, shape of the cars, objects in each car,
etc.). Five of the trains are going East, and the five other
are going West. The problem is to find the relation between
the features of the trains and their destination. A graphical
representation of the ten trains is shown in figure 12

1. TRAINS GOING EAST 2. TRAINS GOING WEST

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

Fig. 12. Michalski’s train problem

To solve this problem, every train is described by a set of
atoms. Figure 13 presents some of the atoms that describe
the first train. The evaluation of PAN is done with “leave-
one-out cross validation”. Ten tests are done. For each of
them, the system is trained on nine trains and evaluated on
the remaining train.

Short(car2), Closed(car2), Long(car1),
Infront(car1, car2), Open(car4), Shape(car1, rectangle),
Load(car3, hexagon, 1), Wheels(car4, 2),. . .

Fig. 13. Part of the Michalski’s first train’s description

System PAN runs in an average of 36 seconds, and
produces a network with 26 input neurons, 2591 hidden
neurons and 1 output neuron; 50% of the hidden neurons
are memory neurons and 47% are composition neurons. All
the runs classify the remaining train correctly. The overall
result is therefore a succes rate of 100%.

The system tried to learn a rule to build a predicate
E, meaning that a train is going to the East. For a given
train example, if the predicate is not produced, the train
is considered as going to the West. This output predicate
does not have any argument, hence the network used in this
learning does not have any output argument-related layers.
Moreover, none of the examples contain function terms and
therefore none of the terms composition and decomposition
layers are needed. In this problem, the network only needed
to learn to produce the atom E when certain conditions fire
over the input atoms.

VII. RELATED WORK

Inductive Logic Programming (ILP), a learning technique
for first order logic based on Inverse Entailment, was intro-
duced in [12] and has been applied in many applications,
notably in bioinformatics. Contrary to ILP, the behavior of
PAN is more similar to an immediate consequence operator.
Therefore, the system does not apply rules recursively, i.e.
it applies only one step. As an example, let us suppose we
present to the system a set of training examples that could
be explained by the two rules R1 = {P ⇒ Q,Q ⇒ R}. The
PAN will not learn R1, but the equivalent set of rule R2 =
{P ⇒ Q,P ⇒ R,Q ⇒ R}. It is expected that the neural
networks in PAN will make the system more ammenable to
noise than ILP and more efficient in general, but this remains
to be verified in larger experiments.

Other ANN techniques operating on first order logic
include those mentioned below.

Bader et al. present in [13] a technique of induction on
TP operators based on ANNs and inspired by [7] where
propositional TP operators with a three layer architecture
are represented. An extension to predicate atoms is described
with a technique called the Fine Blend System, based on the
Cantor set space division. Differently from the Fine Blend,
PAN uses the bijective mapping introduced earlier in this
paper. We believe that this mapping is more appropriate
for providing a constructive approach to first-order neuro-
symbolic integration and more comprehensibility at the as-
sociated process of rule extraction.

Uwents and Blockeel describe in [15] a technique of
induction on relational descriptions based on conditions on
a set. This kind of induction is equivalent to induction on
first order logic without function terms and without terms in

the output predicates. The approach presented here is more
expressive.

Lerdlamnaochai and Kijsirikul present in [9] an alternative
method to achieve induction on logic programs without
functions terms and without terms in the output predicates.
The underlying idea of this method is to have a certain
number of “free input variables”, and present to them all
the different combinations of terms from the input atoms.
This is similar to propositionalisation in ILP and also less
expressive than PAN.

Artificial Neural Networks are often considered as black
box systems defined only by the input convention, the
output convention, and a simple architectural description. For
example, a network can be defined by a number of layers
and the number of nodes allowed in each of those layers.
In contrast, the approach taken in PAN is to carefully define
the internal structure of the network in order to be closely
connected to first order structures. In addition, the following
was made possible by PAN:

• the capacity to deal with functional (and typed) terms
through the term encoding;

• the ability to specify the kinds of rule it is desired to
learn through the language bias;

• the potential for extraction of learned rules, and
• the ability to generate output atoms with arbitrary term

structures.
The last point is a key feature and seems to be novel in the

area of ANNs. Similarly to the Inverse Entailment technique,
PAN is able to generate terms, and not only to test them. For
example, to test if the answer of a problem is P (s), most
relational techniques need to test the predicate P on every
possible term (i.e. P (a), P (b), P (c), P (f(a)), etc.) The
approach followed in the PAN system directly generates the
output argument. This guarantees that the output argument
is unique and will be available in a finite time.

In contrast to ILP techniques and other common symbolic
machine learning techniques ANNs are able to learn combi-
nations of the possible rules. Consider the following example:
if both the rules P (X, X) ⇒ R and Q(X, X) ⇒ R explain
a given set of training examples, the PAN system is able to
learn P (X, X) ∨Q(Y, Y) ⇒ R.

VIII. CONCLUSION AND FURTHER WORK

This paper presented an inductive learning technique for
first order logic rules based on a neuro-symbolic approach
[1]. Inductive learning using ANNs has been previously
applied mainly to propositional domains. Here, the extra
expressiveness of first order logic can promote a range of
other applications including relational learning. This is a
main reason for the development of ANN techniques for
inductive learning in first order logic. Also, ANNs are strong
on noisy data, they are easy to parallelize, but they operate,
by nature, in a propositional way. Therefore, the capacity to
do first order logic induction with ANNs is a promising but
complex challenge. A fuller description of the first prototype
of PAN can be found in [6]. This section discusses some
possible extensions and areas for exploration.

The typing of terms used in PAN is encoded architecturally
in the ANN through the use of predicates. For example, a
predicate P with arity two may accept as first argument a
term of type natural, and as second argument a term of
type any (the more general type). However, it is currently
not possible to type the sub-terms of a composed term. For
example, whatever the type of f(a, g(b)), the types of a and
g(b) have to be any. This restriction on the typing may be
inappropriate, and more general typing may be interesting to
study.

The first order semantics of rules encoded in the ANN
is in direct correspondence with the network architecture.
Therefore, future work will investigate extraction of the rules
directly by the analysis of the weights of some nodes of the
trained network. Knowledge extraction is an important part
of neural-symbolic integration and a research area in its own
right.

To load a set of input atoms into the system, the different
combinations of the input atoms have to be presented se-
quentially to the input layer of the ANN. Depending on the
redundancy of atoms with the same predicate, the number
of combinations may be important. Since the loading of
the atoms have to be sequential, sequential optimization
can be used to improve it. Further experiments will have
to be carried out to evaluate the effectiveness of PAN on
larger problems. As mentioned above, a comparison with
ILP would also be relevant future work.

REFERENCES

[1] L. C. Lamb A. S. d’Avila Garcez and D. M. Gabbay, Neural-Symbolic
Cognitive Reasoning, Springer, 2008.

[2] K. Broda A. S. Davila Garcez and D. M. Gabbay. Symbolic knowledge
extraction from trained neural networks: A sound approach, 2001.

[3] D. E. Rumelhart B. Widrow and M. A. Lehr, ‘Neural networks:
applications in industry, business and science’, Commun. ACM, 37(3),
93–105, (1994).

[4] H. Bhadeshia, ‘Neural networks in materials science’, ISIJ Interna-
tional, 39(10), 966–979, (1999).

[5] C. M. Bishop, Neural Networks for Pattern Recognition., Oxford
University Press, Oxford, 1995.

[6] Mathieu Guillame-Bert, ‘Connectionist artificial neural networks’,
http://www3.imperial.ac.uk/computing/teaching/distinguished-
projects, (2009).

[7] S. Hlldobler and Y. Kalinke, ‘Towards a new massively parallel
computational model for logic programming’, in ECAI94 Workshop on
Combining Symbolic and Connectionist Processing, pp. 68–77, (1994).

[8] S. Bader J. Lehmann and P. Hitzler, ‘Extracting reduced logic pro-
grams from artificial neural networks’, in Proc. IJCAI-05 Workshop
on Neural-Symbolic Learning and Reasoning, NeSy 05, (2005).

[9] T. Lerdlamnaochai and B. Kijsirikul, ‘First-order logical neural net-
works’, Int. J. Hybrid Intelligent Systems, 2(4), 253–267, (2005).

[10] R. S. Michalski, ‘Pattern recognition as rule-guided inductive infer-
ence’, in Proc. of IEEE Trans. on Pattern Analysis and Machine
Intelligence, pp. 349–361, (1980).

[11] T. M. Mitchell, Machine Learning, McGraw-Hill, 1997.
[12] S.H. Muggleton, ‘Inverse entailment and Progol’, New Generation

Computing, 13, 245–286, (1995).
[13] P.Hitzler S. Bader and S. Hölldobler, ‘Connectionist model generation:

A first-order approach’, Neurocomput., 71(13-15), 2420–2432, (2008).
[14] J. Hayes-Michie S.H. Muggleton, M.E. Bain and D. Michie, ‘An

experimental comparison of human and machine learning formalisms’,
in Proc. 6th Int. Workshop on Machine Learning, pp. 113–118, (1989).

[15] W. Uwents and H. Blockeel, ‘Experiments with relational neural
networks’, in Proc. 14th Machine Learning Conference of Belgium
and the Netherlands, pp. 105–112, (2005).

