54,220 research outputs found

    Towards Formal Verification of Web Service Composition

    Get PDF
    http://www.springerlink.com/Web services composition is an emerging paradigm for enabling application integration within and across organizational boundaries. Current Web services composition proposals, such as BPML, WSBPEL, WSCI, and OWL-S, provide solutions for describing the control and data flows in Web service composition. However, such proposals remain at the descriptive level, without providing any kind of mechanisms or tool support for analysis and verification. Therefore, there is a growing interest for the verification techniques which enable designers to test and repair design errors even before actual running of the service, or allow designers to detect erroneous properties and formally verify whether the service process design does have certain desired properties. In this paper, we propose to verify Web services composition using an event driven approach. We assume Web services that are coordinated by a composition process expressed in WSBPEL and we use Event Calculus to specify the properties and requirements to be monitored

    Issues about the Adoption of Formal Methods for Dependable Composition of Web Services

    Full text link
    Web Services provide interoperable mechanisms for describing, locating and invoking services over the Internet; composition further enables to build complex services out of simpler ones for complex B2B applications. While current studies on these topics are mostly focused - from the technical viewpoint - on standards and protocols, this paper investigates the adoption of formal methods, especially for composition. We logically classify and analyze three different (but interconnected) kinds of important issues towards this goal, namely foundations, verification and extensions. The aim of this work is to individuate the proper questions on the adoption of formal methods for dependable composition of Web Services, not necessarily to find the optimal answers. Nevertheless, we still try to propose some tentative answers based on our proposal for a composition calculus, which we hope can animate a proper discussion

    Can Component/Service-Based Systems Be Proved Correct?

    Get PDF
    Component-oriented and service-oriented approaches have gained a strong enthusiasm in industries and academia with a particular interest for service-oriented approaches. A component is a software entity with given functionalities, made available by a provider, and used to build other application within which it is integrated. The service concept and its use in web-based application development have a huge impact on reuse practices. Accordingly a considerable part of software architectures is influenced; these architectures are moving towards service-oriented architectures. Therefore applications (re)use services that are available elsewhere and many applications interact, without knowing each other, using services available via service servers and their published interfaces and functionalities. Industries propose, through various consortium, languages, technologies and standards. More academic works are also undertaken concerning semantics and formalisation of components and service-based systems. We consider here both streams of works in order to raise research concerns that will help in building quality software. Are there new challenging problems with respect to service-based software construction? Besides, what are the links and the advances compared to distributed systems?Comment: 16 page

    Analysis and Verification of Service Interaction Protocols - A Brief Survey

    Get PDF
    Modeling and analysis of interactions among services is a crucial issue in Service-Oriented Computing. Composing Web services is a complicated task which requires techniques and tools to verify that the new system will behave correctly. In this paper, we first overview some formal models proposed in the literature to describe services. Second, we give a brief survey of verification techniques that can be used to analyse services and their interaction. Last, we focus on the realizability and conformance of choreographies.Comment: In Proceedings TAV-WEB 2010, arXiv:1009.330

    Formal certification and compliance for run-time service environments

    Get PDF
    With the increased awareness of security and safety of services in on-demand distributed service provisioning (such as the recent adoption of Cloud infrastructures), certification and compliance checking of services is becoming a key element for service engineering. Existing certification techniques tend to support mainly design-time checking of service properties and tend not to support the run-time monitoring and progressive certification in the service execution environment. In this paper we discuss an approach which provides both design-time and runtime behavioural compliance checking for a services architecture, through enabling a progressive event-driven model-checking technique. Providing an integrated approach to certification and compliance is a challenge however using analysis and monitoring techniques we present such an approach for on-going compliance checking

    Enabling Proactive Adaptation through Just-in-time Testing of Conversational Services

    No full text
    Service-based applications (SBAs) will increasingly be composed of third-party services available over the Internet. Reacting to failures of those third-party services by dynamically adapting the SBAs will become a key enabler for ensuring reliability. Determining when to adapt an SBA is especially challenging in the presence of conversational (aka. stateful) services. A conversational service might fail in the middle of an invocation sequence, in which case adapting the SBA might be costly; e.g., due to the necessary state transfer to an alternative service. In this paper we propose just-in-time testing of conversational services as a novel approach to detect potential problems and to proactively trigger adaptations, thereby preventing costly compensation activities. The approach is based on a framework for online testing and a formal test-generation method which guarantees functional correctness for conversational services. The applicability of the approach is discussed with respect to its underlying assumptions and its performance. The benefits of the approach are demonstrated using a realistic example
    corecore