144,787 research outputs found

    Formal analysis of some secure procedures for certificate delivery

    Get PDF
    The paper describes and formally analyzes two communication protocols to manage the secure emission of digital certificates. The formal analysis is carried out by means of a software tool for the automatic erification of cryptographic protocols with finite behaviour. The tool is able to discover, at a conceptual level, attacks against security procedures. The methodology is general enough to be applied to several kinds of cryptographic procedures and protocols. It is opinion of the authors that this survey contributes towards a better understanding of the structure and aims of a protocol, both for developers, analyzers and final users

    Aspects of Modeling and Verifying Secure Procedures

    Get PDF
    Security protocols are specifications for exchanging messages on a possibly insecure network. They aim at achieving some security goals (eg authenticating the parties involved in a communication, or preserving confidentiality of certain messages) preventing some malicious party to achieve advantages for its own. Goals of security protocols are generally achieved through the use of cryptography, the art of writing in secret characters, not comprehensible to anyone but the sender and the intended recipient. There is however a branch, in the computer science community, that, among its wide field of activities, aims at studying possible attacks on secure procedures without breaking cryptography, eg by manipulating some of the exchanged messages. This is the formal methods community, with an eye for security. This thesis mainly investigates the formal modeling and analysis of security protocols, both with finite and non finite behaviour, both within a process-algebraic and an automata framework. Real life protocols for signing and protecting digital contents and for giving assurance about authentic correspondences will be specified by means of the above cited formalisms, and some of their properties will be verified by means of formal proofs and automated tools. The original contributions of this thesis are the following. Within the framework of a formal modeling and verification of security protocols, we have applied an automated tool to better understand some secure mechanisms for the delivery of electronic documents. This has given us a deep insight on revealing the effects of omitted (or even erroneously implemented) security checks. Furthermore, a formal framework for modeling and analysing secure multicast and wireless communication protocols has been proposed. The analysis is mostly based on some new compositional principles giving sufficient conditions for safely composing an arbitrary number of components within a unique system. Also, steps towards providing the Team Automata formalism (TA) with a framework for security analysis have been taken. Within the framework, we model and analyse integrity and privacy properties, contributing to testify the expressive power and modelling capabilities of TA

    Formalizing and safeguarding blockchain-based BlockVoke protocol as an ACME extension for fast certificate revocation

    Get PDF
    Certificates are integral to the security of today’s Internet. Protocols like BlockVoke allow secure, timely and efficient revocation of certificates that need to be invalidated. ACME, a scheme used by the non-profit Let’s Encrypt Certificate Authority to handle most parts of the certificate lifecycle, allows automatic and seamless certificate issuance. In this work, we bring together both protocols by describing and formalizing an extension of the ACME protocol to support BlockVoke, combining the benefits of ACME’s certificate lifecycle management and BlockVoke’s timely and secure revocations. We then formally verify this extension through formal methods such as Colored Petri Nets (CPNs) and conduct a risk and threat analysis of the ACME/BlockVoke extension using the ISSRM domain model. Identified risks and threats are mitigated to secure our novel extension. Furthermore, a proof-of-concept implementation of the ACME/BlockVoke extension is provided, bridging the gap towards deployment in the real world

    Process calculi and the verification of security protocols, Journal of Telecommunications and Information Technology, 2002, nr 4

    Get PDF
    Recently there has been much interest towards using formal methods in the analysis of security protocols. Some recent approaches take advantage of concepts and techniques from the field of process calculi. Process calculi can be given a formal yet simple semantics, which permits rigorous definitions of such concepts as “attacker”, “secrecy” and “authentication”. This feature has led to the development of solid reasoning methods and verification techniques, a few of which we outline in this paper

    Analysis of the IBM CCA Security API Protocols in Maude-NPA

    Full text link
    Standards for cryptographic protocols have long been attractive candidates for formal verification. It is important that such standards be correct, and cryptographic protocols are tricky to design and subject to non-intuitive attacks even when the underlying cryptosystems are secure. Thus a number of general-purpose cryptographic protocol analysis tools have been developed and applied to protocol standards. However, there is one class of standards, security application programming interfaces (security APIs), to which few of these tools have been applied. Instead, most work has concentrated on developing special-purpose tools and algorithms for specific classes of security APIs. However, there can be much advantage gained from having general-purpose tools that could be applied to a wide class of problems, including security APIs. One particular class of APIs that has proven difficult to analyze using general-purpose tools is that involving exclusive-or. In this paper we analyze the IBM 4758 Common Cryptographic Architecture (CCA) protocol using an advanced automated protocol verification tool with full exclusive-or capabilities, the Maude-NPA tool. This is the first time that API protocols have been satisfactorily specified and analyzed in the Maude-NPA, and the first time XOR-based APIs have been specified and analyzed using a general-purpose unbounded session cryptographic protocol verification tool that provides direct support for AC theories. We describe our results and indicate what further research needs to be done to make such protocol analysis generally effective.Antonio González-Burgueño, Sonia Santiago and Santiago Escobar have been partially supported by the EU (FEDER) and the Spanish MINECO under grants TIN 2010-21062-C02-02 and TIN 2013-45732-C4-1-P, and by Generalitat Valenciana PROMETEO2011/052. José Meseguer has been partially supported by NSF Grant CNS 13-10109.González Burgueño, A.; Santiago Pinazo, S.; Escobar Román, S.; Meadows, C.; Meseguer, J. (2014). Analysis of the IBM CCA Security API Protocols in Maude-NPA. En Security Standardisation Research. Springer International Publishing. 111-130. https://doi.org/10.1007/978-3-319-14054-4_8S111130Abadi, M., Blanchet, B., Fournet, C.: Just fast keying in the pi calculus. ACM Trans. Inf. Syst. Secur. 10(3) (2007)Blanchet, B.: An Efficient Cryptographic Protocol Verifier Based on Prolog Rules. In: 14th IEEE Computer Security Foundations Workshop (CSFW 2014), Cape Breton, Nova Scotia, Canada, June 2001, pp. 82–96. IEEE Computer Society (2014)Bond, M.: Attacks on cryptoprocessor transaction sets. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 220–234. Springer, Heidelberg (2001)Butler, F., Cervesato, I., Jaggard, A.D., Scedrov, A.: A formal analysis of some properties of kerberos 5 using msr. In: CSFW, pp. 175–1790. IEEE Computer Society (2002)Cachin, C., Chandran, N.: A secure cryptographic token interface. In: Proceedings of the 22nd IEEE Computer Security Foundations Symposium, CSF 2009, Port Jefferson, New York, USA, July 8-10, pp. 141–153 (2009)Chevalier, Y., Küsters, R., Rusinowitch, M., Turuani, M.: An NP decision procedure for protocol insecurity with XOR. In: 18th Annual IEEE Symposium on Logic in Computer Science, LICS 2003 (2003)Comon-Lundh, H., Shmatikov, V.: Intruder deductions, constraint solving and insecurity decision in presence of exclusive-or. In: 18th Annual IEEE Symposium on Logic in Computer Science (LICS 2003), pp. 271–280 (2003)Comon-Lundh, H., Cortier, V.: New decidability results for fragments of first-order logic and application to cryptographic protocols. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 148–164. Springer, Heidelberg (2003)Cortier, V., Keighren, G., Steel, G.: Automatic analysis of the aecurity of XOR-based key management schemes. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 538–552. Springer, Heidelberg (2007)Cortier, V., Steel, G.: A generic security API for symmetric key management on cryptographic devices. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 605–620. Springer, Heidelberg (2009)Erbatur, S., et al.: Effective Symbolic Protocol Analysis via Equational Irreducibility Conditions. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 73–90. Springer, Heidelberg (2012)Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: Cryptographic Protocol Analysis Modulo Equational Properties. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.) FOSAD 2007/2008/2009. LNCS, vol. 5705, pp. 1–50. Springer, Heidelberg (2007)Escobar, S., Meadows, C., Meseguer, J., Santiago, S.: Sequential Protocol Composition in Maude-NPA. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp. 303–318. Springer, Heidelberg (2010)Thayer Fabrega, F.J., Herzog, J., Guttman, J.: Strand Spaces: What Makes a Security Protocol Correct? Journal of Computer Security 7, 191–230 (1999)González-Burgueño, A.: Protocol Analysis Modulo Exclusive-Or Theories: A Case study in Maude-NPA. Master’s thesis, Universitat Politècnica de València (March 2014), https://angonbur.webs.upv.es/Previous_work/Master_Thesis.pdfIBM. Comment on Mike’s Bond paper A Chosen Key Difference Attack on Control Vectors (2001), http://www.cl.cam.ac.uk/~mkb23/research/CVDif-Response.pdfIBM. CCA basic services reference and guide: CCA basic services reference and guide for the IBM 4758 PCI and IBM 4764 (2001), http://www-03.ibm.com/security/cryptocards/pdfs/bs327.pdf.2008Keighren, G.: Model Checking IBM’s Common Cryptographic Architecture API. Technical Report 862, University of Edinburgh (October 2006)Kemmerer, R.A.: Using formal verification techniques to analyze encryption protocols. In: IEEE Symposium on Security and Privacy, pp. 134–139. IEEE Computer Society (1987)Küsters, R., Truderung, T.: Reducing protocol analysis with xor to the xor-free case in the horn theory based approach. J. Autom. Reasoning 46(3-4), 325–352 (2011)Linn, J.: Generic security service application program interface version 2, update 1. IETF RFC 2743 (2000), https://datatracker.ietf.org/doc/rfc2743Longley, D., Rigby, S.: An automatic search for security flaws in key management schemes. Computers & Security 11(1), 75–89 (1992)Meadows, C.: Applying formal methods to the analysis of a key management protocol. Journal of Computer Security 1(1) (1992)Meadows, C.: The NRL protocol analyzer: An overview. Journal of Logic Programming 26(2), 113–131 (1996)Meadows, C., Cervesato, I., Syverson, P.: Specification and Analysis of the Group Domain of Interpretation Protocol using NPATRL and the NRL Protocol Analyzer. Journal of Computer Security 12(6), 893–932 (2004)Meadows, C.: Analysis of the internet key exchange protocol using the nrl protocol analyzer. In: IEEE Symposium on Security and Privacy, pp. 216–231. IEEE Computer Society (1999)Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the symbolic snalysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013)Mukhamedov, A., Gordon, A.D., Ryan, M.: Towards a verified reference implementation of a trusted platform module. In: Christianson, B., Malcolm, J.A., Matyáš, V., Roe, M. (eds.) Security Protocols 2009. LNCS, vol. 7028, pp. 69–81. Springer, Heidelberg (2013)National Institute of Standards and Technology. FIPS PUB 46-3: Data Encryption Standard (DES), supersedes FIPS 46-2 (October 1999)Nieuwenhuis, R. (ed.): CADE 2005. LNCS (LNAI), vol. 3632. Springer, Heidelberg (2005)Steel, G.: Deduction with xor constraints in security api modelling. In: Nieuwenhuis (ed.) [30], pp. 322–336Verma, K.N., Seidl, H., Schwentick, T.: On the complexity of equational horn clauses. In: Nieuwenhuis (ed.) [30], pp. 337–35

    Formal Verification of Security Protocol Implementations: A Survey

    Get PDF
    Automated formal verification of security protocols has been mostly focused on analyzing high-level abstract models which, however, are significantly different from real protocol implementations written in programming languages. Recently, some researchers have started investigating techniques that bring automated formal proofs closer to real implementations. This paper surveys these attempts, focusing on approaches that target the application code that implements protocol logic, rather than the libraries that implement cryptography. According to these approaches, libraries are assumed to correctly implement some models. The aim is to derive formal proofs that, under this assumption, give assurance about the application code that implements the protocol logic. The two main approaches of model extraction and code generation are presented, along with the main techniques adopted for each approac

    Secure Communication Channel Establishment: TLS 1.3 (over TCP Fast Open) versus QUIC

    Get PDF
    Secure channel establishment protocols such as Transport Layer Security (TLS) are some of the most important cryptographic protocols, enabling the encryption of Internet traffic. Reducing latency (the number of interactions between parties before encrypted data can be transmitted) in such protocols has become an important design goal to improve user experience. The most important protocols addressing this goal are TLS 1.3, the latest TLS version standardized in 2018 to replace the widely deployed TLS 1.2, and Quick UDP Internet Connections (QUIC), a secure transport protocol from Google that is implemented in the Chrome browser. There have been a number of formal security analyses for TLS 1.3 and QUIC, but their security, when layered with their underlying transport protocols, cannot be easily compared. Our work is the first to thoroughly compare the security and availability properties of these protocols. Towards this goal, we develop novel security models that permit layered\u27\u27 security analysis. In addition to the standard goals of server authentication and data confidentiality and integrity, we consider the goals of IP spoofing prevention, key exchange packet integrity, secure channel header integrity, and reset authentication, which capture a range of practical threats not usually taken into account by existing security models that focus mainly on the cryptographic cores of the protocols. Equipped with our new models we provide a detailed comparison of three low-latency layered protocols: TLS 1.3 over TCP Fast Open (TFO), QUIC over UDP, and QUIC[TLS] (a new design for QUIC that uses TLS 1.3 key exchange) over UDP. In particular, we show that TFO\u27s cookie mechanism does provably achieve the security goal of IP spoofing prevention. Additionally, we find several new availability attacks that manipulate the early key exchange packets without being detected by the communicating parties. By including packet-level attacks in our analysis, our results shed light on how the reliability, flow control, and congestion control of the above layered protocols compare, in adversarial settings. We hope that our models will help protocol designers in their future protocol analyses and that our results will help practitioners better understand the advantages and limitations of secure channel establishment protocols

    Actor-network procedures: Modeling multi-factor authentication, device pairing, social interactions

    Full text link
    As computation spreads from computers to networks of computers, and migrates into cyberspace, it ceases to be globally programmable, but it remains programmable indirectly: network computations cannot be controlled, but they can be steered by local constraints on network nodes. The tasks of "programming" global behaviors through local constraints belong to the area of security. The "program particles" that assure that a system of local interactions leads towards some desired global goals are called security protocols. As computation spreads beyond cyberspace, into physical and social spaces, new security tasks and problems arise. As networks are extended by physical sensors and controllers, including the humans, and interlaced with social networks, the engineering concepts and techniques of computer security blend with the social processes of security. These new connectors for computational and social software require a new "discipline of programming" of global behaviors through local constraints. Since the new discipline seems to be emerging from a combination of established models of security protocols with older methods of procedural programming, we use the name procedures for these new connectors, that generalize protocols. In the present paper we propose actor-networks as a formal model of computation in heterogenous networks of computers, humans and their devices; and we introduce Procedure Derivation Logic (PDL) as a framework for reasoning about security in actor-networks. On the way, we survey the guiding ideas of Protocol Derivation Logic (also PDL) that evolved through our work in security in last 10 years. Both formalisms are geared towards graphic reasoning and tool support. We illustrate their workings by analysing a popular form of two-factor authentication, and a multi-channel device pairing procedure, devised for this occasion.Comment: 32 pages, 12 figures, 3 tables; journal submission; extended references, added discussio

    Towards the Model-Driven Engineering of Secure yet Safe Embedded Systems

    Full text link
    We introduce SysML-Sec, a SysML-based Model-Driven Engineering environment aimed at fostering the collaboration between system designers and security experts at all methodological stages of the development of an embedded system. A central issue in the design of an embedded system is the definition of the hardware/software partitioning of the architecture of the system, which should take place as early as possible. SysML-Sec aims to extend the relevance of this analysis through the integration of security requirements and threats. In particular, we propose an agile methodology whose aim is to assess early on the impact of the security requirements and of the security mechanisms designed to satisfy them over the safety of the system. Security concerns are captured in a component-centric manner through existing SysML diagrams with only minimal extensions. After the requirements captured are derived into security and cryptographic mechanisms, security properties can be formally verified over this design. To perform the latter, model transformation techniques are implemented in the SysML-Sec toolchain in order to derive a ProVerif specification from the SysML models. An automotive firmware flashing procedure serves as a guiding example throughout our presentation.Comment: In Proceedings GraMSec 2014, arXiv:1404.163
    corecore