4,741 research outputs found

    Explainable Semantic Retrieval Using Dual Encoder Large Language Models

    Get PDF
    Semantic matching utilizing large language models (LLMs) to convert text or images into embeddings and scoring them can outperform keyword matching in various ways by matching on meaning rather than word equality. However, semantic matching lacks explainability. This disclosure describes dual-encoder LLM techniques to confer explainability to LLM-based semantic matches within information retrieval systems. Semantic meanings are attached to abstract mathematical embeddings to generate gravitational fields that enable dynamic, high-quality information retrieval as measured by precision/recall, query-understanding, concept-matching, speed, scalability, etc. while providing justifications and user-visible corroborations of search results. Information retrieval is also improved in diversity, personalization, and efficiency, with high query throughput at low latency

    Towards explainable evaluation of language models on the semantic similarity of visual concepts

    Full text link
    Recent breakthroughs in NLP research, such as the advent of Transformer models have indisputably contributed to major advancements in several tasks. However, few works research robustness and explainability issues of their evaluation strategies. In this work, we examine the behavior of high-performing pre-trained language models, focusing on the task of semantic similarity for visual vocabularies. First, we address the need for explainable evaluation metrics, necessary for understanding the conceptual quality of retrieved instances. Our proposed metrics provide valuable insights in local and global level, showcasing the inabilities of widely used approaches. Secondly, adversarial interventions on salient query semantics expose vulnerabilities of opaque metrics and highlight patterns in learned linguistic representations

    Explainable Information Retrieval: A Survey

    Full text link
    Explainable information retrieval is an emerging research area aiming to make transparent and trustworthy information retrieval systems. Given the increasing use of complex machine learning models in search systems, explainability is essential in building and auditing responsible information retrieval models. This survey fills a vital gap in the otherwise topically diverse literature of explainable information retrieval. It categorizes and discusses recent explainability methods developed for different application domains in information retrieval, providing a common framework and unifying perspectives. In addition, it reflects on the common concern of evaluating explanations and highlights open challenges and opportunities.Comment: 35 pages, 10 figures. Under revie

    Analyzing and Interpreting Neural Networks for NLP: A Report on the First BlackboxNLP Workshop

    Full text link
    The EMNLP 2018 workshop BlackboxNLP was dedicated to resources and techniques specifically developed for analyzing and understanding the inner-workings and representations acquired by neural models of language. Approaches included: systematic manipulation of input to neural networks and investigating the impact on their performance, testing whether interpretable knowledge can be decoded from intermediate representations acquired by neural networks, proposing modifications to neural network architectures to make their knowledge state or generated output more explainable, and examining the performance of networks on simplified or formal languages. Here we review a number of representative studies in each category

    Attentive Aspect Modeling for Review-aware Recommendation

    Full text link
    In recent years, many studies extract aspects from user reviews and integrate them with ratings for improving the recommendation performance. The common aspects mentioned in a user's reviews and a product's reviews indicate indirect connections between the user and product. However, these aspect-based methods suffer from two problems. First, the common aspects are usually very sparse, which is caused by the sparsity of user-product interactions and the diversity of individual users' vocabularies. Second, a user's interests on aspects could be different with respect to different products, which are usually assumed to be static in existing methods. In this paper, we propose an Attentive Aspect-based Recommendation Model (AARM) to tackle these challenges. For the first problem, to enrich the aspect connections between user and product, besides common aspects, AARM also models the interactions between synonymous and similar aspects. For the second problem, a neural attention network which simultaneously considers user, product and aspect information is constructed to capture a user's attention towards aspects when examining different products. Extensive quantitative and qualitative experiments show that AARM can effectively alleviate the two aforementioned problems and significantly outperforms several state-of-the-art recommendation methods on top-N recommendation task.Comment: Camera-ready manuscript for TOI
    corecore