3 research outputs found

    Learning Energy-Aware Transaction Scheduling in Database Systems

    Get PDF
    Servers are typically sized to accommodate peak loads, but in practice, they remain under-utilized for much of the time. During periods of low load, there is an opportunity to save power by quickly adjusting processor performance to match the load. Many systems do this by using Dynamic Voltage and Frequency Scaling (DVFS) to adjust the processor’s execution frequency. In transactional database systems, workload-aware approaches running in the DBMS have proved to be able to manage DVFS more effectively than the underlying operating system, as they have more information about the workload and more control over the workload. In this thesis, we ask whether databases can learn to manage DVFS effectively by observing the effects of DVFS on their workload. We present an approach that uses reinforcement learning (RL) to learn in-DBMS frequency governors. Our results show that governors learned using our technique are competitive with state-of-the-art methods, and are able to adapt to a variety of workload conditions. We also show that our method has an added advantage - it allows flexibility in tuning frequency governance to balance a power-performance trade-off. Finally, we discuss the challenges associated with using RL in this setting due to the overheads of using a learned frequency governor

    Energy-Aware Data Management on NUMA Architectures

    Get PDF
    The ever-increasing need for more computing and data processing power demands for a continuous and rapid growth of power-hungry data center capacities all over the world. As a first study in 2008 revealed, energy consumption of such data centers is becoming a critical problem, since their power consumption is about to double every 5 years. However, a recently (2016) released follow-up study points out that this threatening trend was dramatically throttled within the past years, due to the increased energy efficiency actions taken by data center operators. Furthermore, the authors of the study emphasize that making and keeping data centers energy-efficient is a continuous task, because more and more computing power is demanded from the same or an even lower energy budget, and that this threatening energy consumption trend will resume as soon as energy efficiency research efforts and its market adoption are reduced. An important class of applications running in data centers are data management systems, which are a fundamental component of nearly every application stack. While those systems were traditionally designed as disk-based databases that are optimized for keeping disk accesses as low a possible, modern state-of-the-art database systems are main memory-centric and store the entire data pool in the main memory, which replaces the disk as main bottleneck. To scale up such in-memory database systems, non-uniform memory access (NUMA) hardware architectures are employed that face a decreased bandwidth and an increased latency when accessing remote memory compared to the local memory. In this thesis, we investigate energy awareness aspects of large scale-up NUMA systems in the context of in-memory data management systems. To do so, we pick up the idea of a fine-grained data-oriented architecture and improve the concept in a way that it keeps pace with increased absolute performance numbers of a pure in-memory DBMS and scales up on NUMA systems in the large scale. To achieve this goal, we design and build ERIS, the first scale-up in-memory data management system that is designed from scratch to implement a data-oriented architecture. With the help of the ERIS platform, we explore our novel core concept for energy awareness, which is Energy Awareness by Adaptivity. The concept describes that software and especially database systems have to quickly respond to environmental changes (i.e., workload changes) by adapting themselves to enter a state of low energy consumption. We present the hierarchically organized Energy-Control Loop (ECL), which is a reactive control loop and provides two concrete implementations of our Energy Awareness by Adaptivity concept, namely the hardware-centric Resource Adaptivity and the software-centric Storage Adaptivity. Finally, we will give an exhaustive evaluation regarding the scalability of ERIS as well as our adaptivity facilities

    Energy-Efficient Transaction Scheduling in Data Systems

    Get PDF
    Natural short term fluctuations in the load of transactional data systems present an opportunity for power savings. For example, a system handling 1000 requests per second on average can expect more than 1000 requests in some seconds, fewer in others. By quickly adjusting processing capacity to match such fluctuations, power consumption can be reduced. Many systems do this already, using dynamic voltage and frequency scaling (DVFS) to reduce processor performance and power consumption when the load is low. DVFS is typically controlled by frequency governors in the operating system or by the processor itself. The work presented in this dissertation shows that transactional data systems can manage DVFS more effectively than the underlying operating system. This is because data systems have more information about the workload, and more control over that workload, than is available to the operating system. Our goal is to minimize power consumption while ensuring that transaction requests meet specified latency targets. We present energy-efficient scheduling algorithms and systems that manage CPU power consumption and performance within data systems. These algorithms are workload-aware and can accommodate concurrent workloads with different characteristics and latency budgets. The first technique we present is called POLARIS. It directly manages processor DVFS and controls database transaction scheduling. We show that POLARIS can simultaneously reduce power consumption and reduce missed latency targets, relative to operating-system-based DVFS governors. Second, we present PLASM, an energy-efficient scheduler that generalizes POLARIS to support multi-core, multi-processor systems. PLASM controls the distribution of requests to the processors, and it employs POLARIS to manage power consumption locally at each core. We show that PLASM can save power and reduce missed latency targets compared to generic routing techniques such as round-robin
    corecore