8,994 research outputs found

    Massive MIMO is a Reality -- What is Next? Five Promising Research Directions for Antenna Arrays

    Full text link
    Massive MIMO (multiple-input multiple-output) is no longer a "wild" or "promising" concept for future cellular networks - in 2018 it became a reality. Base stations (BSs) with 64 fully digital transceiver chains were commercially deployed in several countries, the key ingredients of Massive MIMO have made it into the 5G standard, the signal processing methods required to achieve unprecedented spectral efficiency have been developed, and the limitation due to pilot contamination has been resolved. Even the development of fully digital Massive MIMO arrays for mmWave frequencies - once viewed prohibitively complicated and costly - is well underway. In a few years, Massive MIMO with fully digital transceivers will be a mainstream feature at both sub-6 GHz and mmWave frequencies. In this paper, we explain how the first chapter of the Massive MIMO research saga has come to an end, while the story has just begun. The coming wide-scale deployment of BSs with massive antenna arrays opens the door to a brand new world where spatial processing capabilities are omnipresent. In addition to mobile broadband services, the antennas can be used for other communication applications, such as low-power machine-type or ultra-reliable communications, as well as non-communication applications such as radar, sensing and positioning. We outline five new Massive MIMO related research directions: Extremely large aperture arrays, Holographic Massive MIMO, Six-dimensional positioning, Large-scale MIMO radar, and Intelligent Massive MIMO.Comment: 20 pages, 9 figures, submitted to Digital Signal Processin

    Designing antennas and RF components for upper millimeter frequencies using advanced substrate technology

    Get PDF
    Abstract. When shifting towards high frequency range, integration in the RF-front end becomes crucial. The ongoing planning of 6G communications systems causes a need to explore the possibilities beyond current 5G systems. To address the compactness and smaller sizes of the RF circuit components, the Integrated Passive Devices (IPD) multilayer technology provides us one solution to this problem. There are options already being tested in terms of implementing on-chip components, especially Antenna-in-Package (AiP) designs with a variety of different substrates. Among these technologies, Low Temperature Co-Fired Ceramic (LTCC) can be seen as a choice offering the freedom of multiple metal layers. IPD can be used for providing AiP solutions, as well as passive components such as baluns, filters, and power dividers. The main target of this thesis is to explore the possibilities and limitations for high frequency designs offered by IPD technology developed by (VTT) Technical Research Centre of Finland. The technology has already been tested at 20 GHz, but the focus was to reach the D-band (110–170 GHz) frequency range and subsequently up to even G-band (220–330 GHz). The technology utilizes 3 metal layers and a high resistivity silicon substrate (a lossy material). Starting off with simple transmission line structures (microstrip lines, strip lines and coplanar waveguides), the designs up to 330 GHz, provided information on the possibilities offered by this technology. After that, different AiP options were simulated with frequencies ranging from D- band to G- band. In addition to single elements, also antenna arrays were studied. Additionally, bandpass filters were designed. The dielectric thickness and the width and thickness of 3 the metal layers play a pivotal role in defining the performance of all the RF components designed using this technology. Furthermore, the size and pitch of the RF probe pads used to excite the structures show an impact on the overall behavior of the transmission lines.Antennien ja RF-komponenttien suunnittelu ylemmille millimetritaajuuksille edistynyttä substraattitekniikkaa käyttäen. Tiivistelmä. Siirryttäessä korkeammille taajuuskaistoille RF-etupään integrointi on entistä tärkeämpää. Käynnissä oleva kuudennen sukupolven (6G) viestintäjärjestelmien suunnittelu edellyttää nykyisiä 5G-järjestelmiä edistyksellisempien teknologisten mahdollisuuksien tarkastelua. Entistä pienempien RF-piirikomponenttien toteuttaminen vaatii uusia teknisiä ratkaisuja, ja yksi mahdollisuus komponenttien pienentämiseen on käyttää integroituihin passiivirakenteisiin (Integrated Passive Devices, IPD) pohjautuvaa monikerrosteknologiaa. Eri vaihtoehtoja on jo testattu sirulle sijoitettavien komponenttien toteuttamiseen eri substraattimateriaaleilla, etenkin paketoitujen antenniratkaisujen (Antenna-in-Package, AiP) suunnittelemiseksi. Eräs vaihtoehto IPD:lle on matalan lämpötilan yhteissintrattava keraamiteknologia (Low Temperature Co-Fired Ceramic, LTCC), joka mahdollistaa useamman metallikerroksen hyödyntämisen suunniteltaessa AiP-rakenteita sekä muita passiivikomponentteja (kuten symmetrointimuuntajia, suodattimia sekä tehonjakajia). Tämän opinnäytetyön päätavoitteena on tarkastella Valtion teknillisen tutkimuskeskuksen (VTT:n) kehittämän IPD-teknologian mahdollisuuksia ja rajoitteita korkean taajuuden rakenteiden suunnitteluun. IPD-teknologiaa on tähän mennessä testattu 20 GHz:n taajuudelle asti, mutta tässä työssä tarkoituksena on tutkia teknologiaa 110–170 GHz:n taajuuksille (D-kaista) sekä myöhemmin aina 220–330 GHz:iin saakka (G-kaista). Teknologia hyödyntää kolmea metallikerrosta sekä häviöllistä korkean ominaisvastuksen piisubstraattia. Yksinkertaisten siirtojohtorakenteiden (mikroliuskajohto, liuskajohto, koplanaarijohto) suunnittelu aina 330 GHz:n taajuudelle asti antoi tietoa teknologian mahdollisuuksista, minkä jälkeen erilaisia AiP-rakenteita simuloitiin D- ja G-kaistoilla. Yksittäisten antennielementtien ohella tarkasteltiin antenniryhmiä. Työssä suunniteltiin myös kaistanpäästösuodattimia. Käytettävissä olevien metalli- ja substraattikerrosten paksuudella sekä niiden mahdollistamilla liuskanleveyksillä on keskeinen rooli IPD-teknologialla suunniteltujen komponenttien suorituskyvyn kannalta. Lisäksi RF-mittapäiden kontaktikohtien koko ja välimatka vaikuttavat siirtojohtojen ominaisuuksiin

    Space-Air-Ground Integrated 6G Wireless Communication Networks: A Review of Antenna Technologies and Application Scenarios

    Get PDF
    A review of technological solutions and advances in the framework of a Vertical Heterogeneous Network (VHetNet) integrating satellite, airborne and terrestrial networks is presented. The disruptive features and challenges offered by a fruitful cooperation among these segments within a ubiquitous and seamless wireless connectivity are described. The available technologies and the key research directions for achieving global wireless coverage by considering all these layers are thoroughly discussed. Emphasis is placed on the available antenna systems in satellite, airborne and ground layers by highlighting strengths and weakness and by providing some interesting trends in research. A summary of the most suitable applicative scenarios for future 6G wireless communications are finally illustrated

    An Overview of Millimeter Wave Communications for Military Applications

    Get PDF
    The use of millimeter wave for Defence communications can offer a number of benefits to the user. Apart from the benefit of wider capacity, millimeter wave also offers ability to provide secure and survivable communication in the presence of enemy threats. In this paper, some of the important benefits for Defence communication are reviewed. An overview of millimeter wave military communication applications, technology development, present status and trends are also given

    Design and Prototype of a Phased-Array Antenna for Nanosatellite Radar and Communication Applications

    Get PDF
    Reconfigurable software defined radios are capable of altering radio frequency parameters of a transceiver to add functionality and improve performance. Initially static by design, reconfigurable radios have become common on nanosatellites, assisting in reduction of launch costs and addition of functionality. Antenna designs have also become reconfigurable, by being able to change frequency range, polarization and many other characteristics. Some antenna designs also perform lobe (beam) steering; however, they are not commercially available for nanosatellites. Some of the added benefits of beam steering are debris detection and satellite-to-satellite communication. Therefore, this research combines antenna frequency reconfigurability and beam steering using an array to design an antenna that can be mounted on a nanosatellite
    corecore